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1 Linear Algebra

Trace

The trace of an n × n matrix, donated tr, is the sum of the (main) diagonal. If A =

[
3 7
2 8

]
, then

tr(A) = 11.

Determinants

It is a bit difficult to describe what a determinant is, but this discussion on stack exchange seems to give
the most intuitive idea. A determinant can only be computed for a square matrix. The determinant for
a matrix, A, can either be denoted as |A| or det(A).

The determinant of a scalar a is just a.

The determinant of a 2× 2 matrix

[
a11 a12
a21 a22

]
is:

a11a22 − a21a12

The determinant of a 3× 3 matrix

a11 a12 a13
a21 a22 a23
a31 a32 a33

 is:

−11+1 · a11
∣∣∣∣a22 a23
a32 a33

∣∣∣∣+−11+2 · a12
∣∣∣∣a21 a23
a31 a33

∣∣∣∣+−11+3 · a13
∣∣∣∣a21 a22
a31 a32

∣∣∣∣
Note

We don’t have to use the first row to calculate the determinant of a matrix that’s bigger than
2× 2. For example, if I chose to use the 2nd column, the determinant for the matrix above would
now be:

−11+2 · a12
∣∣∣∣a21 a23
a31 a33

∣∣∣∣+−12+2 · a22
∣∣∣∣a11 a13
a31 a33

∣∣∣∣+−13+2 · a32
∣∣∣∣a11 a13
a21 a23

∣∣∣∣
If the determinant of a square matrix is nonzero, then that matrix is nonsingular.

Properties

• |A|= |AT |

• |A||B|= |AB|
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https://math.stackexchange.com/questions/668/whats-an-intuitive-way-to-think-about-the-determinant


Practice

Use the definition of a determinant for an n × n matrix to show that the determinant of a 2 × 2
matrix (which was defined earlier) is equal to a11a22 − a21a12.

Inverses

An n× n matrix A is invertible if there exists an n× n matrix B such that:

AB = BA = In (1)

where In is an n× n identity matrix (described in the special matrices section).

Inverse Properties

1. (A−1)−1 = A

2. (AT )−1 = (A−1)T

3. (cA)−1 = c−1A−1

4. If A, B, and C are invertible n× n matrices, then (ABC)−1 = C−1B−1A−1

5. |A−1|= |A|−1

6. A−1A = AA−1 = I

7. A−1 = 1
|A|adj(A)

Special Matrices

Square Matrix

The number of rows (n) equals the number of columns (n) for the matrix. The following is an example
of a square matrix: 10 5 9

4 4 3
6 17 2

 (2)

Symmetric Matrix

A symmetric matrix has the following property: AT = A. This means that aij = aji for all i, j. Notice
that this implies that a symmetric matrix has to be a square matrix (n×n). The following is an example
of a symmetric matrix: 1 5 6

5 4 7
6 7 2

 (3)

Idempotent Matrix

An idempotent matrix (A) has the following property: AA = A

Identity Matrix

An n×n identity matrix (either donated as I or In) has 1’s on the diagonal and 0’s elsewhere. Example:1 0 0
0 1 0
0 0 1

 (4)

Multiplying any matrix by an identity matrix will return that matrix.

AI = A (5)

IB = B (6)
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2 Derivatives

Recall from single-variable calculus, the derivative of a function f with respect to x at point x0 is defined
as:

df(x0)

dx
= lim

h→0

f(x0 + h)− f(x0)

h

If this limit exists, then we say that f is differentiable at x0. We can extend this definition to talk about
derivatives of multivariate functions.

2.1 Partial Derivative

Let f : Rn → R. The partial derivative of f with respect to variable xi at x0 is given by:

∂f(x0)

∂xi
= lim

h→0

f(x1, x2, ..., xi + h, ..., xn)− f(x1, x2, ..., xi, ..., xn)

h

Notice that in this definition, the ith variable is affected. To take the partial derivative of variable xi,
we treat all the other variables as constants.

Example

Consider the function: f(x, y) = 4x2y5 + 3x3y2 + 6y + 10.

∂f(x,y)
∂x = 8xy5 + 9x2y2

∂f(x,y)
∂y = 20x2y4 + 6x3y + 6

2.2 Jacobian Matrix

We can put all of the partials of the function F : Rn → R at x∗ (which we call the derivative of F ) in a
row vector:

DFx∗ =
[
∂F (x∗)
∂x1

. . . ∂F (x∗)
∂xn

]
This can also be referred to as the Jacobian derivative of F.

We can express the derivative in a column vector:

∇Fx∗ =


∂F (x∗)
∂x1

...
∂F (x∗)
∂xn


This representation is usually referred to as the gradient vector.

Example

The gradient vector of our previous example would be:

∇F =

[
8xy5 + 9x2y2

20x2y4 + 6x3y + 6

]

2.3 Hessian Matrix

Recall that for an function of n variables, there are n partial derivatives. We can take partial derivatives
of each partial derivative. The partial derivative of a partial derivative is called the second order partial
derivative.
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Example

The second order partial derivatives for the example above are defined as:

∂2f(x,y)
∂x2 = 8y5 + 18xy2

∂2f(x,y)
∂y2 = 80x2y3 + 6x3

∂2f(x,y)
∂y∂x = 40xy4 + 18x2y

∂2f(x,y)
∂x∂y = 40xy4 + 18x2y

The second order partial derivatives of the form ∂2f(x,y)
∂x∂y where x 6= y are called the cross partial deriva-

tives. Notice from our example, that ∂2f(x,y)
∂x∂y = ∂2f(x,y)

∂y∂x . This is always the case with cross partials. We
see that:

∂2f(x)

∂xi∂xj
=

∂2f(x)

∂xj∂xi

We can put all of these second order partials into a matrix, which is referred to as the Hessian Matrix:
∂2f(x∗)

∂x2
1

∂2f(x∗)
∂x1∂x2

. . . ∂2f(x∗)
∂x1∂xn

∂2f(x∗)
∂x1∂x2

∂2f(x∗)
∂x2

2
. . . ∂2f(x∗)

∂x2∂xn

...
...

. . .
...

∂2f(x∗)
∂xn∂x1

∂2f(x∗)
∂xn∂x2

. . . ∂2f(x∗)
∂x2

n
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Exercises

Let A be a convex subset of Rn where f : A→ R. Let f be concave.

1. Compute the Hessian matrix for the following functions:

(a) f(x, y) = 4x2y − 3xy3 + 6x

(b) f(x, y) = 3x2y − 7x
√
y

2. Calculate the determinant for the following matrix: 1 1 1
1 4 2
1 4 3


3. Let X be an n× n matrix. Show X−1 =

(
XTX

)−1
XT
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