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1 Linear Algebra

Trace

The trace of an n x n matrix, donated tr, is the sum of the (main) diagonal. If A = [g Q, then
tr(A) = 11.

Determinants

It is a bit difficult to describe what a determinant is, but this discussion on stack exchange seems to give
the most intuitive idea. A determinant can only be computed for a square matrix. The determinant for
a matrix, A, can either be denoted as |A| or det(A).

The determinant of a scalar a is just a.
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The determinant of a 2 x 2 matrix | 't 121 g
az1 Aa22

a11a22 — 21412
a1l aiz2 a13
The determinant of a 3 X 3 matrix |asy ass a3 | is:
azip asz ass

142 az1 a2
+—1 + - a12

as;  as2

az; a3
azi ass

a22 a23
agz ass

We don’t have to use the first row to calculate the determinant of a matrix that’s bigger than
2 x 2. For example, if I chose to use the 2nd column, the determinant for the matrix above would
now be:

_11+1 a1 + _11+3 - a13

ai1 ais
a21 a23

a1l ais
aszy ass

a1 asg3
a3y ass

—1M2 . apy +—1%72 . ag + —1372 . ag,

If the determinant of a square matrix is nonzero, then that matrix is nonsingular.

Properties
o |Al=|AT]
* [Al|B|=|AB|


https://math.stackexchange.com/questions/668/whats-an-intuitive-way-to-think-about-the-determinant

Practice

Use the definition of a determinant for an n X n matrix to show that the determinant of a 2 x 2
matrix (which was defined earlier) is equal to aj1a22 — asja;2.

Inverses
An n x n matrix A is invertible if there exists an n x n matrix B such that:
AB=BA=1, (1)

where I, is an n x n identity matrix (described in the special matrices section).

Inverse Properties
1. (A H)=t=4
2. (AT)"1 = (A—1)T
(cA)™t =c1A7t
. If A, B, and C are invertible n x n matrices, then (ABC)~! = C~!B71A~!
A= A
CATIA=AAT =T

A7t = I—l‘adj(A)
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Special Matrices
Square Matrix

The number of rows (n) equals the number of columns (n) for the matrix. The following is an example
of a square matrix:

—_

0 5
4 4
6 7

(2)
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Symmetric Matrix

A symmetric matrix has the following property: AT = A. This means that a;; = a;; for all i, j. Notice
that this implies that a symmetric matrix has to be a square matrix (n x n). The following is an example
of a symmetric matrix:

3)

S Ol =
-3 ot
N~ O

Idempotent Matrix
An idempotent matrix (A) has the following property: AA = A

Identity Matrix

An n x n identity matrix (either donated as I or I,,) has 1’s on the diagonal and 0’s elsewhere. Example:

1 00
010 (4)
0 0 1

Multiplying any matrix by an identity matrix will return that matrix.
Al =A ()
IB=B (6)



2 Derivatives

Recall from single-variable calculus, the derivative of a function f with respect to x at point xg is defined
as:

df (o) — lim f(xzo+h) — f(z0)
dx h—0 h

If this limit exists, then we say that f is differentiable at xy. We can extend this definition to talk about
derivatives of multivariate functions.

2.1 Partial Derivative
Let f:R™ — R. The partial derivative of f with respect to variable x; at x° is given by:

of(x")

— lim flrr,@o, sy 4+ hy ooy ) — f(21, T2, 00y Ty ey Ty)
a.’IJZ' h—0 h

Notice that in this definition, the ith variable is affected. To take the partial derivative of variable x;,
we treat all the other variables as constants.

Consider the function: f(x,y) = 42%y® + 323y* + 6y + 10.
aféz,y) = 8xy° + 9r2y?

—8fl(9’;’y) = 20z%y* + 623y + 6

2.2 Jacobian Matrix

We can put all of the partials of the function F : R" — R at z* (which we call the derivative of F') in a
row vector:

DF,. = [250) . o)

This can also be referred to as the Jacobian derivative of F.

We can express the derivative in a column vector:
OF (z*)
oxq
VE,« = :
OF (z*)
ox.,

This representation is usually referred to as the gradient vector.

The gradient vector of our previous example would be:

5 2 2
VF:[ 8xy® + 9z?y ]

20z2y* + 623y + 6

2.3 Hessian Matrix

Recall that for an function of n variables, there are n partial derivatives. We can take partial derivatives
of each partial derivative. The partial derivative of a partial derivative is called the second order partial
derivative.



The second order partial derivatives for the example above are defined as:

BZQSZ,y) = 8y5 + 18xy?

82£;€,y) = 80z2%y3 + 623
4_23;};;;/ = 40zy* + 1822y

PLEw) — 4ogyt + 1827y

2
The second order partial derivatives of the form %&y) where = # y are called the cross partial deriva-

2 2
tives. Notice from our example, that 2 afz(g;!y) =2 af;gf). This is always the case with cross partials. We
see that:

’f(x) _ f(x)
8$Z‘6.’I}j - 695]83:@

We can put all of these second order partials into a matrix, which is referred to as the Hessian Matrix:

’f(x¥) % f(z") *f(x")
0x3 0x10x2 " Ox10z,
2 f(@*) 92 f(z") % f(z*)
Ox10x2o 032 Tt Oxedxy,
f(@r) 9 f(z") % f(z*)
0z, 0x1 O0x, 022 T ox2



Exercises

Let A be a convex subset of R™ where f: A — R. Let f be concave.
1. Compute the Hessian matrix for the following functions:

(a) f(z,y) =42’y — 3zy® + 6z
(b) fle,y) = 3oty — oy

2. Calculate the determinant for the following matrix:

— = =
N
W N =

1

3. Let X be an n x n matrix. Show X ' = (X7X) X7
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