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1 Definiteness

1.1 Principal Minors

We can also evaluate the principal minors of A to determine the definiteness of A.

Let A be an n × n matrix. A kth order principal submatrix is k × k and is formed by deleting n − k
rows, and the same n− k columns. Taking the determinant of a kth order principal submatrix yields a
kth order principal minor.

The kth order leading principal submatrix of A, usually written as |Ak|, is the left most submatrix in
A that is k × k. The determinant of the kth order leading principal submatrix is called the kth order
leading principal determinant.

Example

Find all principal minors for the following matrix: 2 −1 0
−1 2 −1

0 −1 2


First order principal minors:

det(2) = 2 ← First order leading principal minor

det(2) = 2

det(2) = 2

Second order principal minors:∣∣∣∣ 2 −1
−1 2

∣∣∣∣ = 3 ← Second order leading principal minor∣∣∣∣ 2 0
0 2

∣∣∣∣ = 4∣∣∣∣ 2 −1
−1 2

∣∣∣∣ = 3

Third order principal minor:∣∣∣∣∣∣
2 −1 0
−1 2 −1

0 −1 2

∣∣∣∣∣∣ = 4 ← Third order leading principal minor

Let A be an n× n matrix. Then,
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• A is positive definite iff all of its leading principal minors are positive.

• A is negative definite iff leading principal minors alternate in sign, and the 1st order princiapl
minor is negative.

• A is positive semi-definite iff every principal minor of is is nonnegative.

• A is negative semi-definite iff every principal minor of odd order is nonpositive, and every
principal minors of even order is nonnegative.

• A is indefinite iff A does not have any of these patterns.

Practice

Show that the following matrix is positive definite:

 2 −1 0
−1 2 −1

0 −1 2



2 Unconstrained Optimization

2.1 Optima

Let f : X → R where X ⊆ Rn:

Global Optima

• x∗ ∈ X is a global max of F on X if F (x∗) ≥ F (x) for all x ∈ X

• x∗ ∈ X is a global min of F on X if F (x∗) ≤ F (x) for all x ∈ X

Strict Global Optima

• x∗ ∈ X is a strict global max of F on X if F (x∗) > F (x) for all x ∈ X

• x∗ ∈ X is a strict global min of F on X if F (x∗) < F (x) for all x ∈ X

Local Optima

• x∗ ∈ X is a local max of F if there is a epsilon-ball Bε(x
∗) around x∗ such that F (x∗) ≥ F (x)

for all x ∈ X

• x∗ ∈ X is a local min of F if there is a epsilon-ball Bε(x
∗) around x∗ such that F (x∗) ≤ F (x) for

all x ∈ X

Strict Local Optima

• x∗ ∈ X is a strict local max of F if there is a epsilon-ball Bε(x
∗) around x∗ such that F (x∗) >

F (x) for all x ∈ X

• x∗ ∈ X is a strict local min of F if there is a epsilon-ball Bε(x
∗) around x∗ such that F (x∗) < F (x)

for all x ∈ X

2.2 First Order Conditions

Before we talk about first order conditions, we need to define what the interior of a set is. Consider the
set X ⊆ Rn. Xo is the interior of set X, where Xo is defined as:

Xo = {∈ X : ∃Bε(x) ⊆ X}

Each element of Xo is an interior point of X.

Theorem: Let F : X → R be a C1 function where X ⊆ Rn. If x∗ is a local max or min of F on X and
x∗ is an interior point of X then:

DFx∗ = 0
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Example

Let F (x, y) = x3 − y3 + 9xy. We can find the ”critical points” by setting the first order partial
derivatives equal to 0:

∂F

∂x
: 3x2 + 9y = 0

∂F

∂y
: −3y2 + 9x = 0

From the first equation, we find that y = − 1
3x

2. Substitute this into the second equation:

0 = −3(−1

3
x2)2 + 9x

= −1

3
x4 + 9x

⇒ x = 0 or x = 3

Plugging these values into either equation gives us the critical points: (0, 0) and (3,−3).

Notice that from the theorem above, in order for x∗ to be an optimum, it is a necessary condition for all
first order partials at x∗ to be equal to 0. That being said, having all first order partials equal to 0 does
not mean that that point is an optimum. That point is known as a critical point and could be either a
local max, a local min, or a saddle point. We have to check second order conditions to determine what
kind of critical point x∗ is.

2.3 Second Order Conditions

Theorem: Let F : X → R be a C2 function where X ⊆ Rn and X is an open set. Further suppose that
x∗ is a critical point of F.

• x∗ is a strict local max of F if the Hessian, D2Fx∗ is negative definite.

• x∗ is a strict local min of F if the Hessian, D2Fx∗ is positive definite.

• x∗ is a saddle point of F (neither a local min or local max) if the Hessian, D2Fx∗ is indefinite.

Example

Using the same example as before, F (x, y) = x3 − y3 + 9xy. The critical points are (0, 0) and
(3,−3). The Hessian of F is: (

6x 9
9 −6y

)
At the critical point (0, 0), the Hessian is: (

0 9
9 0

)
Notice that the first order leading principal minor is: |0|= 0, and the second order leading principal

minor is

∣∣∣∣ 0 9
9 0

∣∣∣∣ = −81. Notice that the Hessian at (0, 0) is indefinite, thus (0, 0) is a saddle

point.

At the critical point (3,−3), the Hessian is:(
18 9
9 18

)
Notice that the first order leading principal minor is: |18|= 18, and the second order leading
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principal minor is

∣∣∣∣ 18 9
9 18

∣∣∣∣ = 243. Notice that the Hessian at (3,−3) is positive definite, thus

(3,−3) is a strict local min.

Theorem: Let F : X → R be a C2 function where X ⊆ Rn. Suppose that x∗ is an interior point of X
and x∗ is a local max (respectively min) of F . Then:

1. DFx∗ = 0

2. D2Fx∗ is negative semi-definite (respectively, positive semi-definite)

Theorem: Let F : X → R be a C2 function where X ⊆ Rn and X is an open, convex set. The following
conditions are equivalent (meaning if one condition is true, the other conditions are true):

1. F is a concave function on X

2. F (y)− F (x) ≤ DFx(y − x) ∀x, y ∈ X

3. D2Fx∗ is negative semi-definite ∀x, y ∈ X

Practice

Let F : X → R be a C2 function where X ⊆ Rn and X is an open, convex set. Show that F is a
concave function on X ⇒F(y) - F(x) ≤ DFx(y − x) ∀x, y ∈ X

The following conditions are equivalent:

1. F is a convex function on X

2. F (y)− F (x) ≥ DFx(y − x) ∀x, y ∈ X

3. D2Fx∗ is positive semi-definite ∀x, y ∈ X

Now, assume that F is a concave function on X, then we know that F (y)−F (x) ≤ DFx(y−x) ∀x, y ∈ X.
Notice that if x∗ is a local max or min and in the interior of X, then it follows that DFx∗ = 0. Thus
F (y)− F (x∗) ≤ 0⇒ F (x∗) ≥ F (y) ∀y ∈ X. Thus, the following follows:

Theorem: If F is a concave function on X and DFx∗ = 0 for some x∗ ∈ X, then x∗ is a global max of
F on X

Theorem: If F is a convex function on X and DFx∗ = 0 for some x∗ ∈ X, then x∗ is a global min of
F on X
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Exercises

1. Determine the definiteness of the following matrix: −1 1 0
1 −1 0
0 0 −2


2. Find the critical points and classify these as local max, local min, saddle point, or ”can’t tell”:

f(x, y, z) =
(
x2 + 2y2 + 3z2

)
e−(x2+y2+z2)
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