Assignment 1

Due August 12, 2019

- 1. Solve the following system of linear equations:
 - x 3z = -2-3x + y + 6z = 32x 2y z = -1
- 2. Solve the following system of linear equations:
 - $-x_1 + 2x_2 x_3 = 2$ $-2x_1 + 2x_2 + x_3 = 4$ $3x_1 + 2x_2 + 2x_3 = 5$ $-3x_1 + 8x_2 + 5x_3 = 17$
- 3. Suppose $AB = \begin{bmatrix} 5 & 4 \\ -2 & 3 \end{bmatrix}$ and $B = \begin{bmatrix} 7 & 3 \\ 2 & 1 \end{bmatrix}$. Find A.
- 4. Compute the Hessian matrix for the following functions:
 - (a) $f(x,y) = 4x^2y 3xy^3 + 6x$
 - (b) $f(x,y) = 3x^2y 7x\sqrt{y}$
- 5. Calculate the determinant for the following matrix:

$$\left(\begin{array}{rrrr} 1 & 1 & 1 \\ 1 & 4 & 2 \\ 1 & 4 & 3 \end{array}\right)$$

- 6. Let X be an $n \times n$ matrix. Show $X^{-1} = (X^T X)^{-1} X^T$
- 7. Determine the definiteness of the following matrix:

$$\left(\begin{array}{rrrr} -1 & 1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & -2 \end{array}\right)$$

8. Find the critical points and classify these as local max, local min, saddle point, or "can't tell":

$$f(x, y, z) = (x^2 + 2y^2 + 3z^2) e^{-(x^2 + y^2 + z^2)}$$

9. The Cobb-Douglas utility function is given by $U(x_1, x_2) = kx_1^{\alpha}x_2^{1-\alpha}$ where x_1 and x_2 are two goods. Assume a consumer's budget set is $p_1x_1 + p_2x_2 \leq I$. Do the following:

- (a) List the Karush Kuhn Tucker conditions for the problem above.
- (b) Solve for the maximizers x_1^*, x_2^* , and the Lagrangian multiplier.
- 10. Consider the following production function: $y = f(x_1, x_2, ..., x_n) = \prod_{i=1}^n x_i^{\alpha_i}$ for i = 1, 2, ..., n where $a_i > 0$ and $\sum_{i=1}^n \alpha_i = 1$. The firm maximizes profits under perfect competition (in other words price or output, p > 0, and prices of inputs, $w_i > 0$, are exogenous or given):

$$\max_{x_1, x_2, \dots, x_n} pf(x_1, x_2, \dots, x_n) - \sum_{i=1}^n w_i x_i$$

Solve for the maximizer $(x_1^*, x_2^*, \dots, x_n^*)$

11. Use integration by parts to evaluate the following integral:

$$\int x^2 \sin(x) dx$$

12. Use the chain rule to find $\frac{\partial w}{\partial s}$ and $\frac{\partial w}{\partial s}$ for

$$w = 2xy$$

where $x = s^2 + t^2$ and $y = \frac{s}{t}$.