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1 Real Analysis

1.1 Monotonic Sequences

A sequence is increasing if xn ≤ xn+1 for all n ∈ N, and is decreasing if xn ≥ xn+1 for all n ∈ N. A
sequence is monotonic if it is either increasing or decreasing.

2 Topology

2.1 Open Sets

An open ball of radius ε > 0 centered about point x ∈ X can be defined by:

Bε(x) = {y ∈ X : d(x, y) < ε}

If we a working in the metric space (R, d1), then the open ball is just an open interval, and is
usually referred to as an ε-neighborhood. In the metric space (R2, d2), the open ball is a circle, and
in the metric space (R3, d2), the open ball is a sphere.

A set A ⊆ X is open if for all points a ∈ A if there exists an open ball Bε(a) ⊆ A.

Practice

Using the definition above and assuming the metric space is (R, d1):

1. Show that Bε(a) is an open set.

From the definition of open set, we need to show that for every point in Bε(a), we can
make an open ball around any point, and that open ball must be contained in Bε(a).
Consider y ∈ Bε(a). If we define an open ball around y as Bε1(y), where ε1 = ε−|y − a|,
you’ll see that Bε1(y) ⊆ Bε(a). Thus ⊆ Bε(a). Hence Bε(a) is open.

2. Show that R is an open set.

Pick a y ∈, and put a ball of radius ε ∈ around y. Notice that since ε ∈, it is always
that case that Bε(y) ∈. Thus is open.

3. Show that (0, 1) is an open set.

See 2018 Assignment 3 solutions.
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The following theorems hold for open sets:

1. The union of open sets is open.

2. The finite intersection of open sets is open.

2.2 Closed Sets

Let (X, d) be a metric space, and S be a subset of X. A point x is a limit point of set S iff
{Bε(x)− {x}} ∩ S 6= ∅ where ε > 0. For x to be a limit point of S, if we take an open ball around
it, no matter what the size of that open ball, there will exist other points from S other than x in
that open ball. Note: for a point x to be a limit point of S, it doesn’t necessarily have to be an
element of S. It only has to contain an element from S in its open ball for every ε > 0. The set of
all limit points of a set S is usually denoted as S′

We say that a set S is closed iff S contains all of its limit points. In other words, S′ ⊆ S. It does
not have to be the case that S = S′.

Practice

The set of natural numbers, N, can be written in the form: {1} ∪ {2} ∪ {3} ∪ {4} ∪ ... where
{n} is said to be an isolated point. Is {n} a limit point? What does that tell us about the
set N, is it open, closed, or neither.

{n} where n ∈ is not a limit point as we can easily find an ε > 0 such that a ball around
every point in the set contains only that point. Thus there are no limit points in the set .
Notice that, trivially, contains all of its limit points, so is closed.

The following theorems hold for closed sets:

1. The finite union of closed sets is closed.

2. The intersection of closed sets is closed.

2.3 Open and Closed Sets

The following theorem is useful for determining if a set is open or closed: The compliment of a
closed set is open, and the compliment of an open set is closed.

Practice

1. Show that the empty set, ∅, is both closed and open.

For the empty set, the set of its limit points is just the empty set. Since ∅ ⊆ ∅, then
the ∅ is closed.

Notice that = ∅. We see that contains all of its limit points, thus it is closed. Then ∅
is open.

2. Determine if [0, 1] ∪ {2} is open, closed, or neither.
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Notice that the set of limit points for [0, 1]∪{2} is [0, 1]. Since [0, 1] ⊆ [0, 1]∪{2}, then
[0, 1] ∪ {2} is closed.

2.4 Compact Sets

A subset S in a Euclidean space is said to be compact iff S is closed and bounded.

A subset S is compact if every sequence in S has a subsequence that converges to a point in S.

Practice

Show that for a compact set S ⊆ R, the supremum and infimum or S are elements of S.

Let S ⊆ R. Suppose that S be bounded and let b = supS. For every ε > 0, there exists an
s ∈ S such that b− ε < s. Notice that we have defined an open ball Bε(b), and we see that
∃s ∈ Bε(b) for any ε > 0. Thus b is a limit point of S. Since S is closed, S must contain all
of its limit points. Therefore b ∈ S. Or in other words, supS ∈ S.

A similar argument can be used to show that inf S ∈ S.

3



3 Advanced Theorems

3.1 Continuous Functions

A function f : A → R is continuous at c ∈ A if for all ε > 0, there exists δ > 0 such that when
|x − c|< δ, it follows that |f(x) − f(c)|< ε. f is said to be continuous on A if f is continuous at
every point in the domain A.

Additional properties: Let f : A→ R and g : A→ R be continuous at a point c ∈ A. Then:

1. kf(x) is continuous at c for every k ∈ R

2. f(x) + g(x) is continuous at c.

3. f(x) · g(x) is continuous at c.

4. f(x)
g(x) is continuous at c, given f(x)

g(x) exists.

3.2 Intermediate Value Theorem

If f : [a, b] → R is continuous on [a, b], and r is a real number such that f(a) ≤ r ≤ f(b) or
f(z) ≥ r ≥ f(b), then there exists a c ∈ [a, b] such that f(c) = r.
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Exercises

Consider the metric space (R, d1) for the following problems, where d1 is the absolute value metric.

1. Using the definition of open ball (or ε-neighborhood). Show that (a, b), where a < b, is an
open set.

2. Let

B =

{
(−1)nn

n+ 1
: n ∈ N

}
(a) Find the limit points of B.

(b) Is B a closed set? Why or why not?

(c) Is B an open set? Why or why not?
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