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1 Derivatives

Recall from single-variable calculus, the derivative of a function f with respect to x at point x0 is defined
as:

df(x0)

dx
= lim

h→0

f(x0 + h)− f(x0)

h

If this limit exists, then we say that f is differentiable at x0. We can extend this definition to talk about
derivatives of multivariate functions.

1.1 Partial Derivative

Let f : Rn → R. The partial derivative of f with respect to variable xi at x0 is given by:

∂f(x0)

∂xi
= lim

h→0

f(x1, x2, ..., xi + h, ..., xn)− f(x1, x2, ..., xi, ..., xn)

h

Notice that in this definition, the ith variable is affected. To take the partial derivative of variable xi,
we treat all the other variables as constants.

Example

Consider the function: f(x, y) = 4x2y5 + 3x3y2 + 6y + 10.

∂f(x,y)
∂x = 8xy5 + 9x2y2

∂f(x,y)
∂y = 20x2y4 + 6x3y + 6

1.2 Gradient Vector

We can put all of the partials of the function F : Rn → R at x∗ (which we call the derivative of F ) in a
row vector:

DFx∗ =
[
∂F (x∗)
∂x1

. . . ∂F (x∗)
∂xn

]
This can also be referred to as the Jacobian derivative of F.

We can express the derivative in a column vector:

∇Fx∗ =


∂F (x∗)
∂x1

...
∂F (x∗)
∂xn


This representation is usually referred to as the gradient vector.
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Example

The gradient vector of our previous example would be:

∇F =

[
8xy5 + 9x2y2

20x2y4 + 6x3y + 6

]

1.3 Jacobian Matrix

We won’t always be working with functions of the form F : Rn → R. We might work with functions of
the form F : Rn → Rm. A common example example in economics is a production function that has
n inputs and m outputs. Considering the production function example, notice that we can write this
function as m functions:

q1 =f1(x1, x2, ..., xn)

q2 =f2(x1, x2, ..., xn)

...

qm =f1(x1, x2, ..., xn)

We can put the functions and their respective partials in a matrix in order to get the Jacobian Matrix:

DF (x∗) =


∂f1(x

∗)
∂x1

∂f1(x
∗)

∂x2
. . . ∂f1(x

∗)
∂xn

∂f2(x
∗)

∂x1

∂f2(x
∗)

∂x2
. . . ∂f2(x

∗)
∂xn

...
...

. . .
...

∂fm(x∗)
∂x1

∂fm(x∗)
∂x2

. . . ∂fm(x∗)
∂xn


1.4 Hessian Matrix

Recall that for an function of n variables, there are n partial derivatives. We can take partial derivatives
of each partial derivative. The partial derivative of a partial derivative is called the second order partial
derivative.

Example

The second order partial derivatives for the example above are defined as:

∂2f(x,y)
∂x2 = 8y5 + 18xy2

∂2f(x,y)
∂y2 = 80x2y3 + 6x3

∂2f(x,y)
∂y∂x = 40xy4 + 18x2y

∂2f(x,y)
∂x∂y = 40xy4 + 18x2y

The second order partial derivatives of the form ∂2f(x,y)
∂x∂y where x 6= y are called the cross partial deriva-

tives. Notice from our example, that ∂2f(x,y)
∂x∂y = ∂2f(x,y)

∂y∂x . This is always the case with cross partials. We
see that:

∂2f(x)

∂xi∂xj
=
∂2f(x)

∂xj∂xi
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We can put all of these second order partials into a matrix, which is referred to as the Hessian Matrix:
∂2f(x∗)

∂x2
1

∂2f(x∗)
∂x1∂x2

. . . ∂2f(x∗)
∂x1∂xn

∂2f(x∗)
∂x1∂x2

∂2f(x∗)
∂x2

2
. . . ∂2f(x∗)

∂x2∂xn

...
...

. . .
...

∂2f(x∗)
∂xn∂x1

∂2f(x∗)
∂xn∂x2

. . . ∂2f(x∗)
∂x2

n


Let the function f : A→ R be a C2 function, where A is a convex and open set in Rn.

• f is strictly convex iff its Hessian matrix is positive definite for any x ∈ A.

• f is strictly concave iff its Hessian matrix is negative definite for any x ∈ A.

• f is (weakly) convex iff its Hessian matrix is positive semidefinite for any x ∈ A.

• f is (weakly) concave iff its Hessian matrix is negative semidefinite for any x ∈ A.

2 Convexity and Concavity

2.1 Convex Sets

A set A, in a real vector space V , is convex iff:

λx1 + (1− λ)x2 ∈ A

for any λ ∈ [0, 1] and any x1, x2 ∈ A.

2.2 Function Concavity and Convexity

Let A be a convex set in vector space V . Consider the function f : A→ R.

1. f is concave iff:

f(λx1 + (1− λ)x2) ≥ λf(x1) + (1− λ)f(x2) (1)

for any x1, x2 ∈ A and λ ∈ [0, 1].

2. f is convex iff:

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2) (2)

for any x1, x2 ∈ A and λ ∈ [0, 1].

3. f is strictly concave iff:

f(λx1 + (1− λ)x2) > λf(x1) + (1− λ)f(x2) (3)

for any x1, x2 ∈ A and λ ∈ [0, 1].

4. f is strictly convex iff:

f(λx1 + (1− λ)x2) < λf(x1) + (1− λ)f(x2) (4)

for any x1, x2 ∈ A and λ ∈ [0, 1].

Note

If a function is not convex, it does not mean that it is concave. Likewise, if a function is not
concave, it does not mean that it is convex.
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Practice

Consider f : A → R and g : A → R where A is a convex set in a vector space. If f and g are
concave functions show that:

1. f + g is a concave function.

2. cf is a concave function if c > 0, and a convex function if c < 0.

2.3 Jensen’s Inequality

Let the function f : A→ R where A is a convex set in a vector space, then:

• f is concave iff

f

(
n∑

i=1

λixi

)
≥

n∑
i=1

λif(xi)

• f is convex iff

f

(
n∑

i=1

λixi

)
≤

n∑
i=1

λif(xi)

for any λ1, ..., λn ∈ R+ such that
∑n

i=1 λi = 1 and x1, ..., xn ∈ A

2.4 Quasiconcave and Quasiconvex

Let A be a convex set in vector space V . Consider the function f : A→ R.

1. f is quasiconcave iff:

f(λx1 + (1− λ)x2) ≥ min{f(x1), f(x2)} (5)

for any x1, x2 ∈ A and λ ∈ [0, 1].

2. f is quasiconvex iff:

f(λx1 + (1− λ)x2) ≤ max{f(x1), f(x2)} (6)

for any x1, x2 ∈ A and λ ∈ [0, 1].

3. f is strictly quasiconcave iff:

f(λx1 + (1− λ)x2) > min{f(x1), f(x2)} (7)

for any x1, x2 ∈ A and λ ∈ [0, 1].

4. f is strictly quasiconvex iff:

f(λx1 + (1− λ)x2) < max{f(x1), f(x2)} (8)

for any x1, x2 ∈ A and λ ∈ [0, 1].

Practice

1. Show that if a function f is concave, then f is also quasiconcave.

2. Show that if a function f is convex, then f is also quasiconvex.

4



2.5 Contour Sets

Let A be a convex set in vector space V . Consider the function f : A → R. An upper contour set of
a ∈ R is defined as:

{x ∈ A : f(x) ≥ a}

A lower contour set of a ∈ A is defined similarly:

{x ∈ A : f(x) ≤ a}

Let A be a convex set in vector space V . Consider the function f : A→ R. Then,

1. f is quasiconcave iff its upper contour set is convex for any a ∈ R

2. f is quasiconvex iff its lower contour set is convex for any a ∈ R

2.6 Graphs

Let the function f : A→ R. The graph of f is defined as the following set:

G(f) = {(x, y) ∈ A× R : y = f(x)}

The epigraph is the set above the graph, and is defined as:

G+(f) = {(x, y) ∈ A× R : y ≥ f(x)}

The subgraph is the set below the graph, and is defined as:

G−(f) = {(x, y) ∈ A× R : y ≤ f(x)}

The following theorem follows:

1. G−(f) is a convex set iff f is concave.

2. G+(f) is a convex set iff f is convex.

3 Multivariate Calculus

3.1 Derivatives

Let f(x) and g(x) be differentiable functions, and a, n ∈ R. Derivatives have following properties:

1. (af)′ = af ′(x)

2. (f + g)′ = f ′(x) + g′(x)

3. (fg)′ = f ′g + fg′

4.
(

f
g

)′
= f ′g−fg′

g2

5. d
dx (c) = 0

6. d
dx (f(g(x)) = f ′(g(x))g′(x)

3.2 Integrals

Integrals have the following properties:

1.
∫
af(x)dx = a

∫
f(x)dx

2.
∫

(f + g)dx =
∫
f(x)dx+

∫
g(x)dx
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3.3 Integration by Parts

We can use integration by parts to integrate some more complex expressions. The formula for integration
by parts is: ∫

u(x) · v′(x)dx = u(x) · v(x)−
∫
u′(x) · v(x)dx

Example

Using integration by parts, we can integrate the expression xe2x:
Let u(x) = x, and v′(x) = e2x. Thus u′(x) = 1 and v(x) = 1

2e
2x. Using the integration by parts,

we see that: ∫
xe2xdx = x

1

2
e2x −

∫
1 · 1

2
e2xdx

=
1

2

(
xe2x −

∫
e2xdx

)
=

1

2
xe2x − 1

4
e2x + C

where C ∈ R.
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Exercises

Let A be a convex subset of Rn where f : A→ R. Let f be concave.

1. Show that f is quasiconcave.

2. Show that cf is a concave function when c > 0, and cf is a convex function when c < 0.
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