Optimization and Multivariate Calculus

Joe Patten

August 7, 2019

These notes are to accompany Mathematics for Economists by Simon and Blume.

1 Multivariate Calculus

1.1 Chain Rule

Let $w = f(x, y)$ where f is a differentiable function of x and y. Let $x = g(t)$ and $y = h(t)$ where g and h are differentiable functions of t . Then by the chain rule:

$$
\frac{dw}{dt} = \frac{\partial w}{\partial x}\frac{dx}{dt} + \frac{\partial w}{\partial y}\frac{dy}{dt}
$$

Example

Let $w = x^3y^2 - x^2$ and $x = e^t$ and $y = cos(t)$. $\frac{dw}{dt} = \frac{\partial w}{\partial x}$ ∂x $\frac{dx}{dt} + \frac{\partial w}{\partial y}$ ∂y dy dt $=(3x^2y^2-2x)(e^t)+(2x^3y)(-sin(t))$

1.2 Total Differential

Recall that when we take a partial derivative, we measure a variable's direct effect on a function (as we keep all other variables constant). If we also want to take into account a variable's indirect effect on a function (i.e. the effect that it has on other variables, which in turn affect the function), then we need to take a total differential.

 $= (3e^{2t}cos^2(t) - 2e^t) (e^t) - (2e^{3t}cos(t)) (sin(t))$

Consider $z = f(x, y)$. The total differential of z is given by:

$$
dz = \frac{\partial z}{\partial x}dx + \frac{\partial z}{\partial y}dy
$$

Example

Find the total differential for: $z = 2x \sin(y) - 3x^2y^2$.

$$
dz = \frac{\partial z}{\partial x} dx + \frac{\partial z}{\partial y} dy
$$

= $(2 \sin(y) - 3x^2 y^2) dx + (2x \cos(y) - 6x^2 y) dy$

1.3 Implicit Differentiation

Consider the equation $F(x, y) = 0$ where y is defined implicitly as a differentiable function of x. Then,

$$
\frac{dy}{dx} = -\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial y}}
$$

Example

Consider $xy^2 + x^3y + 5y - 4 = 0$. Find $\frac{dy}{dx}$:

$$
\frac{dy}{dx} = -\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial y}}
$$

$$
= -\frac{y^2 + 3x^2y}{2xy + x^3 + 5}
$$

$$
= \frac{-y^2 - 3x^2y}{2xy + x^3 + 5}
$$

Practice

Use the chain rule to derive the implicit differentiation problem above.

1.4 Taylor Series/Polynomial

If f is differentiable of order $n + 1$ on interval I, then there exists z between points x and c, which are on in the interval I , such that:

$$
f(x) = f(c) + f'(c)(x - c) + \frac{f''(c)}{2!}(x - c)^2 + \frac{f'''(c)}{3!}(x - c)^3 + \dots + \frac{f^{(n)}(c)}{n!}(x - c)^n + R_n(c)
$$

\n
$$
R_n(c) = \frac{f^{(n+1)}(z)}{(n+1)!}(x - c)^{n+1}.
$$

where $R_n(c)$: $\frac{f^{n+1}(z)}{(n+1)!}(x-c)$

 $R_n(c)$ is commonly referred to as the remainder or error. There are many uses of the Taylor polynomial. One use is to approximate the value of a function at a certain point, x , given that you know the value of the function at a close point, c. The higher the degree of polynomial we use, the closer we will get the the actual value of $f(x)$. You will notice that in each equation below, I have left out the remainder term, thus, we get an approximate value for $f(x)$

First order Taylor polynomial: $f(x) \approx f(c) + f'(c)(x - c)$ Second order Taylor polynomial: $f(x) \approx f(c) + f'(c)(x - c) + \frac{f''(c)}{2!}(x - c)^2$ Third order Taylor polynomial: $f(x) \approx f(c) + f'(c)(x - c) + \frac{f''(c)}{2!}(x - c)^2 + \frac{f'''(c)}{3!}(x - c)^3$

Practice

Given a function is strictly concave, and $x > c$ (i.e. we are given $f(c)$ and approximating $f(x)$), show that the approximate value for $f(x)$ using a first order Taylor polynomial is greater than the actual value of $f(x)$.

Note

A Maclaurin series is a special case of a Taylor series or polynomial. In a Maclaurin series, $c = 0$.

2 Unconstrained Optimization

2.1 Optima

Let $f: X \to \mathbb{R}$ where $X \subseteq \mathbb{R}^n$:

Global Optima

- $x^* \in X$ is a global max of F on X if $F(x^*) \ge F(x)$ for all $x \in X$
- $x^* \in X$ is a global min of F on X if $F(x^*) \leq F(x)$ for all $x \in X$

Strict Global Optima

- $x^* \in X$ is a strict global max of F on X if $F(x^*) > F(x)$ for all $x \in X$
- $x^* \in X$ is a strict global min of F on X if $F(x^*) < F(x)$ for all $x \in X$

Local Optima

- $x^* \in X$ is a local max of F if there is a epsilon-ball $B_\varepsilon(x^*)$ around x^* such that $F(x^*) \geq F(x)$ for all $x \in X$
- $x^* \in X$ is a local min of F if there is a epsilon-ball $B_{\varepsilon}(x^*)$ around x^* such that $F(x^*) \leq F(x)$ for all $x \in X$

Strict Local Optima

- $x^* \in X$ is a strict local max of F if there is a epsilon-ball $B_{\varepsilon}(x^*)$ around x^* such that $F(x^*)$ $F(x)$ for all $x \in X$
- $x^* \in X$ is a strict local min of F if there is a epsilon-ball $B_{\varepsilon}(x^*)$ around x^* such that $F(x^*) < F(x)$ for all $x \in X$

2.2 First Order Conditions

Before we talk about first order conditions, we need to define what the interior of a set is. Consider the set $X \subseteq \mathbb{R}^n$. X^o is the interior of set X, where X^o is defined as:

$$
X^o = \{ \in X : \exists B_{\varepsilon}(x) \subseteq X \}
$$

Each element of X^o is an interior point of X.

Theorem: Let $F: X \to \mathbb{R}$ be a C^1 function where $X \subseteq \mathbb{R}^n$. If x^* is a local max or min of F on X and x^* is an interior point of X then:

$$
DF_{x^*} = \mathbf{0}
$$

Example

Let $F(x, y) = x^3 - y^3 + 9xy$. We can find the "critical points" by setting the first order partial derivatives equal to 0:

$$
\frac{\partial F}{\partial x} : 3x^2 + 9y = 0
$$

$$
\frac{\partial F}{\partial y} : -3y^2 + 9x = 0
$$

From the first equation, we find that $y = -\frac{1}{3}x^2$. Substitute this into the second equation:

$$
0 = -3(-\frac{1}{3}x^2)^2 + 9x
$$

$$
= -\frac{1}{3}x^4 + 9x
$$

$$
\Rightarrow x = 0 \text{ or } x = 3
$$

Plugging these values into either equation gives us the critical points: $(0,0)$ and $(3,-3)$.

Notice that from the theorem above, in order for x^* to be an optimum, it is a necessary condition for all first order partials at x^* to be equal to 0. That being said, having all first order partials equal to 0 does not mean that that point is an optimum. That point is known as a **critical point** and could be either a local max, a local min, or a saddle point. We have to check second order conditions to determine what kind of critical point x^* is.

2.3 Second Order Conditions

Theorem: Let $F: X \to \mathbb{R}$ be a C^2 function where $X \subseteq \mathbb{R}^n$ and X is an open set. Further suppose that x^* is a critical point of F.

- x^* is a strict local max of F if the Hessian, $D^2F_{x^*}$ is negative definite.
- x^* is a strict local min of F if the Hessian, $D^2F_{x^*}$ is positive definite.
- x^* is a saddle point of F (neither a local min or local max) if the Hessian, $D^2F_{x^*}$ is indefinite.

Example

Using the same example as before, $F(x, y) = x^3 - y^3 + 9xy$. The critical points are $(0, 0)$ and $(3, -3)$. The Hessian of F is:

$$
\left(\begin{array}{cc}6x&9\\9&-6y\end{array}\right)
$$

At the critical point $(0, 0)$, the Hessian is:

$$
\left(\begin{array}{cc} 0 & 9 \\ 9 & 0 \end{array}\right)
$$

Notice that the first order leading principal minor is: $|0|=0$, and the second order leading principal minor is 0 9 9 0 \vert = −81. Notice that the Hessian at $(0, 0)$ is indefinite, thus $(0, 0)$ is a saddle point.

At the critical point $(3, -3)$, the Hessian is:

$$
\left(\begin{array}{cc} 18 & 9 \\ 9 & 18 \end{array}\right)
$$

Notice that the first order leading principal minor is: $|18|= 18$, and the second order leading principal minor is $\overline{}$ $\overline{}$ $\bigg\}$ $(3, -3)$ is a strict local min. $18\,$ 9 18 $\overline{}$ l l \vert $= 243$. Notice that the Hessian at $(3, -3)$ is positive definite, thus

Theorem: Let $F: X \to \mathbb{R}$ be a C^2 function where $X \subseteq \mathbb{R}^n$. Suppose that x^* is an interior point of X and x^* is a local max (respectively min) of F . Then:

- 1. $DF_{r^*} = 0$
- 2. $D^2F_{\tau^*}$ is negative semi-definite (respectively, positive semi-definite)

Theorem: Let $F: X \to \mathbb{R}$ be a C^2 function where $X \subseteq \mathbb{R}^n$ and X is an open, convex set. The following conditions are equivalent (meaning if one condition is true, the other conditions are true):

- 1. F is a concave function on X
- 2. $F(y) F(x) \le DF_x(y x) \quad \forall x, y \in X$
- 3. $D^2F_{x^*}$ is negative semi-definite $\forall x, y \in X$

Practice

Let $F: X \to \mathbb{R}$ be a C^2 function where $X \subseteq \mathbb{R}^n$ and X is an open, convex set. Show that F is a concave function on $X \Rightarrow F(y)$ - $F(x) \le DF_x(y-x) \quad \forall x, y \in X$

The following conditions are equivalent:

- 1. F is a convex function on X
- 2. $F(y) F(x) \ge DF_x(y x) \quad \forall x, y \in X$
- 3. $D^2F_{x^*}$ is positive semi-definite $\forall x, y \in X$

Now, assume that F is a concave function on X, then we know that $F(y)-F(x) \le DF_x(y-x) \,\forall x, y \in X$. Notice that if x^* is a local max or min and in the interior of X, then it follows that $DF_{x^*} = 0$. Thus $F(y) - F(x^*) \leq 0 \Rightarrow F(x^*) \geq F(y) \,\forall y \in X$. Thus, the following follows:

Theorem: If F is a concave function on X and $DF_{x^*} = \mathbf{0}$ for some $x^* \in X$, then x^* is a global max of F on X

Theorem: If F is a convex function on X and $DF_{x^*} = 0$ for some $x^* \in X$, then x^* is a global min of F on X

Exercises

- 1. Consider the function $f(x) = \ln(1+x)$.
	- (a) Calculate $f(.5)$.
	- (b) Using a first order Taylor polynomial, approximate $f(.5)$ using $x_0 = 0$.
	- (c) Using a second order Taylor polynomial, approximate $f(.5)$ using $x_0 = 0$.
	- (d) Using a third order Taylor polynomial, approximate $f(.5)$ using $x_0 = 0$.
- 2. Differentiate implicitly to find $\frac{dy}{dx}$:

$$
x^2 - 3xy + y^2 - 2x + y - 5 = 0
$$

3. Find the critical points and classify these as local max, local min, saddle point, or "can't tell":

$$
f(x, y, z) = (x2 + 2y2 + 3z2) e-(x2+y2+z2)
$$