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These notes are to accompany Mathematics for Economists by Simon and Blume.

1 Multivariate Calculus

1.1 Chain Rule

Let w = f(x,y) where f is a differentiable function of  and y. Let = ¢(¢t) and y = h(t) where g and
h are differentiable functions of t. Then by the chain rule:

dw _owds 0w dy
dt Oz dt = Oy dt

Let w = 23y? — 22 and z = ¢! and y = cos(t).

dw Owdr Owdy
& " ocdt oyt
= (32%y® — 2x) (') + (2x3y) (—sin(t))
= (3e*'cos®(t) — 2¢') (e') — (2¢* cos(t)) (sin(t))

1.2 Total Differential

Recall that when we take a partial derivative, we measure a variable’s direct effect on a function (as we
keep all other variables constant). If we also want to take into account a variable’s indirect effect on a
function (i.e. the effect that it has on other variables, which in turn affect the function), then we need
to take a total differential.

Consider z = f(x,y). The total differential of z is given by:

Find the total differential for: z = 2z sin(y) — 3z%y>.

= (2sin(y) — 32%y?) dz + (2z cos(y) — 62%y) dy



1.3 Implicit Differentiation
Consider the equation F'(x,y) = 0 where y is defined implicitly as a differentiable function of x. Then,

oF

dy _ ow
- OF
w5y

Example

Consider zy? + 2%y + 5y — 4 = 0. Find %

dy _ 5
dz %—1;

y? + 322y
~ 2zy+a3+5
-y —32%

2ey + 23+ 5

Practice

Use the chain rule to derive the implicit differentiation problem above.

1.4 Taylor Series/Polynomial

If f is differentiable of order n + 1 on interval I, then there exists z between points  and ¢, which are
on in the interval I, such that:

f(c)

n!

f"(e) f"(e)

f@) =1+ Q@ -+ 2w -0 + 2w -+ + E 2w - o+ R0

where R, (c) = f(::l()z)( — o)t

R, (c) is commonly referred to as the remainder or error. There are many uses of the Taylor polynomial.
One use is to approximate the value of a function at a certain point, z, given that you know the value
of the function at a close point, ¢. The higher the degree of polynomial we use, the closer we will get
the the actual value of f(z). You will notice that in each equation below, I have left out the remainder
term, thus, we get an approximate value for f(x)

First order Taylor polynomial: f(x) = f(c) + f'(c)(z — ¢)
Second order Taylor polynomial: f(x) = f(c) + f'(¢)(x —¢) + r (°)( —c)?
Third order Taylor polynomial: f(z) &~ f(c)+ f'(c)(z —¢) + fT(,C)( c)? + f”/(c)( —c)3

Practice

Given a function is strictly concave, and z > ¢ (i.e. we are given f(c) and approximating f(x)),
show that the approximate value for f(z) using a first order Taylor polynomial is greater than the
actual value of f(z).

Note

A Maclaurin series is a special case of a Taylor series or polynomial. In a Maclaurin series, ¢ = 0.



2 Unconstrained Optimization

2.1 Optima
Let f: X — R where X CR™:
Global Optima
e z* € X is a global max of F' on X if F(2*) > F(x) for all x € X
e z* € X is a global min of F on X if F(z*) < F(z) for all z € X
Strict Global Optima
e z* € X is a strict global max of F on X if F(z*) > F(x) for all z € X
e 2* € X is a strict global min of F on X if F(z*) < F(z) for all z € X
Local Optima

e * € X is a local max of F if there is a epsilon-ball B.(z*) around z* such that F(z*) > F(z)
forall z € X

e z* € X is a local min of F if there is a epsilon-ball B.(z*) around z* such that F(z*) < F(z) for
allz € X

Strict Local Optima

e z* € X is a strict local max of F if there is a epsilon-ball B.(z*) around z* such that F(z*) >
F(x) for all z € X

e z* € X isa strict local min of F if there is a epsilon-ball B.(z*) around z* such that F(z*) < F(z)
forall z € X

2.2 First Order Conditions

Before we talk about first order conditions, we need to define what the interior of a set is. Consider the
set X C R™. X° is the interior of set X, where X° is defined as:

X°={e X :3B.(x) C X}
Each element of X° is an interior point of X.

Theorem: Let F: X — R be a C! function where X C R™. If 2* is a local max or min of F on X and

* is an interior point of X then:
DF,. =0

Let F(x,y) = 2° — v + 92y. We can find the "critical points” by setting the first order partial
derivatives equal to 0:
oF
Az
oF
y

From the first equation, we find that y = —%xQ. Substitute this into the second equation:

322 +9y =0

: =3y +92=0

1
0= —3(—5932)2 + 9z

1,
= —= 9
390 + 92

=x=0o0orxz=3

Plugging these values into either equation gives us the critical points: (0,0) and (3, —3).



Notice that from the theorem above, in order for * to be an optimum, it is a necessary condition for all
first order partials at =* to be equal to 0. That being said, having all first order partials equal to 0 does
not mean that that point is an optimum. That point is known as a critical point and could be either a
local max, a local min, or a saddle point. We have to check second order conditions to determine what
kind of critical point z* is.

2.3 Second Order Conditions

Theorem: Let F: X — R be a C? function where X C R™ and X is an open set. Further suppose that
x* is a critical point of F.

e z* is a strict local max of F if the Hessian, D?F,- is negative definite.
e z* is a strict local min of F if the Hessian, D?F,- is positive definite.

e 2* is a saddle point of F' (neither a local min or local max) if the Hessian, D?F, is indefinite.

Using the same example as before, F(x,y) = 23 — y> + 92y. The critical points are (0,0) and
(3, —3). The Hessian of F is:

6z 9

9 —6y

At the critical point (0,0), the Hessian is:
0 9
9 0

Notice that the first order leading principal minor is: |0|= 0, and the second order leading principal

8 g = —81. Notice that the Hessian at (0,0) is indefinite, thus (0,0) is a saddle

minor is

point.

At the critical point (3, —3), the Hessian is:

18 9

9 18
Notice that the first order leading principal minor is: |18|= 18, and the second order leading
9

9 18
(3,—3) is a strict local min.

principal minor is = 243. Notice that the Hessian at (3, —3) is positive definite, thus

Theorem: Let F: X — R be a C? function where X C R™. Suppose that z* is an interior point of X
and z* is a local max (respectively min) of F'. Then:

1. DF,. =0
2. D?F,. is negative semi-definite (respectively, positive semi-definite)

Theorem: Let F: X — R be a C? function where X C R™ and X is an open, convex set. The following
conditions are equivalent (meaning if one condition is true, the other conditions are true):

1. F'is a concave function on X
2. F(y)— F(z) < DF,(y —z) Vz,ye X

3. D?F,. is negative semi-definite Vz,y € X



Practice

Let F: X — R be a C? function where X C R” and X is an open, convex set. Show that F is a
concave function on X =F(y) - F(x) < DF,(y — ) Vz,y € X

The following conditions are equivalent:
1. Fis a convex function on X
2. Fly)— F(x) > DF,(y —z) Yo,y e X
3. D?F,. is positive semi-definite Vz,y € X
Now, assume that F' is a concave function on X, then we know that F'(y) — F(z) < DF,(y—=z) Vz,y € X.

Notice that if * is a local max or min and in the interior of X, then it follows that DF,+» = 0. Thus
F(y) — F(z*) < 0= F(z*) > F(y) Yy € X. Thus, the following follows:

Theorem: If F' is a concave function on X and DF,« = 0 for some z* € X, then z* is a global max of
FonX

Theorem: If F' is a convex function on X and DF,+ = 0 for some x* € X, then z* is a global min of
Fon X



Exercises

1. Consider the function f(z) = In(1 + z).

(a) Calculate f(.5).
(b) Using a first order Taylor polynomial, approximate f(.5) using z¢ = 0.
(c) Using a second order Taylor polynomial, approximate f(.5) using o = 0.

(d) Using a third order Taylor polynomial, approximate f(.5) using xg = 0.

2. Differentiate implicitly to find %:
2 —=3xy4+9y* —20+y—5=0
3. Find the critical points and classify these as local max, local min, saddle point, or ”can’t tell”:

f(x,y,z) _ (33‘2 + 2y2 + 32,2) e—(x2+y2+zz)
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