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These notes are to accompany Mathematics for Economists by Simon and Blume.

1 Multivariate Calculus

1.1 Chain Rule

Let w = f(x, y) where f is a differentiable function of x and y. Let x = g(t) and y = h(t) where g and
h are differentiable functions of t. Then by the chain rule:

dw

dt
=

∂w

∂x

dx

dt
+

∂w

∂y

dy

dt

Example

Let w = x3y2 − x2 and x = et and y = cos(t).

dw

dt
=

∂w

∂x

dx

dt
+

∂w

∂y

dy

dt

=
(
3x2y2 − 2x

) (
et
)

+
(
2x3y

)
(−sin(t))

=
(
3e2tcos2(t)− 2et

) (
et
)
−
(
2e3tcos(t)

)
(sin(t))

1.2 Total Differential

Recall that when we take a partial derivative, we measure a variable’s direct effect on a function (as we
keep all other variables constant). If we also want to take into account a variable’s indirect effect on a
function (i.e. the effect that it has on other variables, which in turn affect the function), then we need
to take a total differential.

Consider z = f(x, y). The total differential of z is given by:

dz =
∂z

∂x
dx +

∂z

∂y
dy

Example

Find the total differential for: z = 2x sin(y)− 3x2y2.

dz =
∂z

∂x
dx +

∂z

∂y
dy

=
(
2 sin(y)− 3x2y2

)
dx +

(
2x cos(y)− 6x2y

)
dy
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1.3 Implicit Differentiation

Consider the equation F (x, y) = 0 where y is defined implicitly as a differentiable function of x. Then,

dy

dx
= −

∂F
∂x
∂F
∂y

Example

Consider xy2 + x3y + 5y − 4 = 0. Find dy
dx :

dy

dx
= −

∂F
∂x
∂F
∂y

= − y2 + 3x2y

2xy + x3 + 5

=
−y2 − 3x2y

2xy + x3 + 5

Practice

Use the chain rule to derive the implicit differentiation problem above.

1.4 Taylor Series/Polynomial

If f is differentiable of order n + 1 on interval I, then there exists z between points x and c, which are
on in the interval I, such that:

f(x) = f(c) + f ′(c)(x− c) +
f ′′(c)

2!
(x− c)2 +

f ′′′(c)

3!
(x− c)3 + . . . +

fn(c)

n!
(x− c)n + Rn(c)

where Rn(c) = fn+1(z)
(n+1)! (x− c)n+1.

Rn(c) is commonly referred to as the remainder or error. There are many uses of the Taylor polynomial.
One use is to approximate the value of a function at a certain point, x, given that you know the value
of the function at a close point, c. The higher the degree of polynomial we use, the closer we will get
the the actual value of f(x). You will notice that in each equation below, I have left out the remainder
term, thus, we get an approximate value for f(x)

First order Taylor polynomial: f(x) ≈ f(c) + f ′(c)(x− c)

Second order Taylor polynomial: f(x) ≈ f(c) + f ′(c)(x− c) + f ′′(c)
2! (x− c)2

Third order Taylor polynomial: f(x) ≈ f(c) + f ′(c)(x− c) + f ′′(c)
2! (x− c)2 + f ′′′(c)

3! (x− c)3

Practice

Given a function is strictly concave, and x > c (i.e. we are given f(c) and approximating f(x)),
show that the approximate value for f(x) using a first order Taylor polynomial is greater than the
actual value of f(x).

Note

A Maclaurin series is a special case of a Taylor series or polynomial. In a Maclaurin series, c = 0.
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2 Unconstrained Optimization

2.1 Optima

Let f : X → R where X ⊆ Rn:

Global Optima

• x∗ ∈ X is a global max of F on X if F (x∗) ≥ F (x) for all x ∈ X

• x∗ ∈ X is a global min of F on X if F (x∗) ≤ F (x) for all x ∈ X

Strict Global Optima

• x∗ ∈ X is a strict global max of F on X if F (x∗) > F (x) for all x ∈ X

• x∗ ∈ X is a strict global min of F on X if F (x∗) < F (x) for all x ∈ X

Local Optima

• x∗ ∈ X is a local max of F if there is a epsilon-ball Bε(x
∗) around x∗ such that F (x∗) ≥ F (x)

for all x ∈ X

• x∗ ∈ X is a local min of F if there is a epsilon-ball Bε(x
∗) around x∗ such that F (x∗) ≤ F (x) for

all x ∈ X

Strict Local Optima

• x∗ ∈ X is a strict local max of F if there is a epsilon-ball Bε(x
∗) around x∗ such that F (x∗) >

F (x) for all x ∈ X

• x∗ ∈ X is a strict local min of F if there is a epsilon-ball Bε(x
∗) around x∗ such that F (x∗) < F (x)

for all x ∈ X

2.2 First Order Conditions

Before we talk about first order conditions, we need to define what the interior of a set is. Consider the
set X ⊆ Rn. Xo is the interior of set X, where Xo is defined as:

Xo = {∈ X : ∃Bε(x) ⊆ X}

Each element of Xo is an interior point of X.

Theorem: Let F : X → R be a C1 function where X ⊆ Rn. If x∗ is a local max or min of F on X and
x∗ is an interior point of X then:

DFx∗ = 0

Example

Let F (x, y) = x3 − y3 + 9xy. We can find the ”critical points” by setting the first order partial
derivatives equal to 0:

∂F

∂x
: 3x2 + 9y = 0

∂F

∂y
: −3y2 + 9x = 0

From the first equation, we find that y = − 1
3x

2. Substitute this into the second equation:

0 = −3(−1

3
x2)2 + 9x

= −1

3
x4 + 9x

⇒ x = 0 or x = 3

Plugging these values into either equation gives us the critical points: (0, 0) and (3,−3).
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Notice that from the theorem above, in order for x∗ to be an optimum, it is a necessary condition for all
first order partials at x∗ to be equal to 0. That being said, having all first order partials equal to 0 does
not mean that that point is an optimum. That point is known as a critical point and could be either a
local max, a local min, or a saddle point. We have to check second order conditions to determine what
kind of critical point x∗ is.

2.3 Second Order Conditions

Theorem: Let F : X → R be a C2 function where X ⊆ Rn and X is an open set. Further suppose that
x∗ is a critical point of F.

• x∗ is a strict local max of F if the Hessian, D2Fx∗ is negative definite.

• x∗ is a strict local min of F if the Hessian, D2Fx∗ is positive definite.

• x∗ is a saddle point of F (neither a local min or local max) if the Hessian, D2Fx∗ is indefinite.

Example

Using the same example as before, F (x, y) = x3 − y3 + 9xy. The critical points are (0, 0) and
(3,−3). The Hessian of F is: (

6x 9
9 −6y

)
At the critical point (0, 0), the Hessian is: (

0 9
9 0

)
Notice that the first order leading principal minor is: |0|= 0, and the second order leading principal

minor is

∣∣∣∣ 0 9
9 0

∣∣∣∣ = −81. Notice that the Hessian at (0, 0) is indefinite, thus (0, 0) is a saddle

point.

At the critical point (3,−3), the Hessian is:(
18 9
9 18

)
Notice that the first order leading principal minor is: |18|= 18, and the second order leading

principal minor is

∣∣∣∣ 18 9
9 18

∣∣∣∣ = 243. Notice that the Hessian at (3,−3) is positive definite, thus

(3,−3) is a strict local min.

Theorem: Let F : X → R be a C2 function where X ⊆ Rn. Suppose that x∗ is an interior point of X
and x∗ is a local max (respectively min) of F . Then:

1. DFx∗ = 0

2. D2Fx∗ is negative semi-definite (respectively, positive semi-definite)

Theorem: Let F : X → R be a C2 function where X ⊆ Rn and X is an open, convex set. The following
conditions are equivalent (meaning if one condition is true, the other conditions are true):

1. F is a concave function on X

2. F (y)− F (x) ≤ DFx(y − x) ∀x, y ∈ X

3. D2Fx∗ is negative semi-definite ∀x, y ∈ X
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Practice

Let F : X → R be a C2 function where X ⊆ Rn and X is an open, convex set. Show that F is a
concave function on X ⇒F(y) - F(x) ≤ DFx(y − x) ∀x, y ∈ X

The following conditions are equivalent:

1. F is a convex function on X

2. F (y)− F (x) ≥ DFx(y − x) ∀x, y ∈ X

3. D2Fx∗ is positive semi-definite ∀x, y ∈ X

Now, assume that F is a concave function on X, then we know that F (y)−F (x) ≤ DFx(y−x) ∀x, y ∈ X.
Notice that if x∗ is a local max or min and in the interior of X, then it follows that DFx∗ = 0. Thus
F (y)− F (x∗) ≤ 0⇒ F (x∗) ≥ F (y) ∀y ∈ X. Thus, the following follows:

Theorem: If F is a concave function on X and DFx∗ = 0 for some x∗ ∈ X, then x∗ is a global max of
F on X

Theorem: If F is a convex function on X and DFx∗ = 0 for some x∗ ∈ X, then x∗ is a global min of
F on X
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Exercises

1. Consider the function f(x) = ln(1 + x).

(a) Calculate f(.5).

(b) Using a first order Taylor polynomial, approximate f(.5) using x0 = 0.

(c) Using a second order Taylor polynomial, approximate f(.5) using x0 = 0.

(d) Using a third order Taylor polynomial, approximate f(.5) using x0 = 0.

2. Differentiate implicitly to find dy
dx :

x2 − 3xy + y2 − 2x + y − 5 = 0

3. Find the critical points and classify these as local max, local min, saddle point, or ”can’t tell”:

f(x, y, z) =
(
x2 + 2y2 + 3z2

)
e−(x2+y2+z2)
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