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1 Optimization

1.1 Constrained Optimization

We have covered unconstrained optimization, and will now consider optimizing objective functions that
are subject to constraints. The general form of a constrained optimization problem is:

max
x

f(x) subject to g1(x) ≤ b1, . . . , gk(x) ≤ bk,

h1(x) = c1, . . . , hm(x) = cm

where x =


x1
x2

...
xn

 ∈ Rn

The function f is known as the objective function, g1, . . . , gk are inequality constraints, and h1, . . . , hm
are equality constraints. In some cases, additional constraints x1 ≥ 0, . . . , xn ≥ 0 known as nonnegativity
constraints could also be included.

1.2 Equality Constraints

Let’s start with the following constrained optimization problem:

max
x1,x2

U(x1, x2) subject to p1x1 + p2x2 = I

This example might look a bit familiar. When you start looking at utility maximization problems, this
is usually the one you start with. x1 and x2 are two goods that enter into this particular utility function
U(x1, x2), which is our objective function. Notice that the (budget) constraint p1x1 + p2x2 = I is of
the form h(x1, x2) = I. The optimal bundle of goods x∗ = (x∗1, x

∗
2) will be the bundle on the constraint

where the utility function is maximized. In order to find the optimal bundle of goods, x∗ = (x∗1, x
∗
2), we

find the point where the budget constraint is tangent to the utility function. Or in other words:

−
∂U
∂x1

∂U
∂x2

(x∗) = −
∂h
∂x1

∂h
∂x2

(x∗)

Rearranging the function above yields the following equality:

∂U
∂x1

∂h
∂x1

(x∗) =
∂U
∂x2

∂h
∂x2

(x∗)
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Now let µ equal these values:

∂U
∂x1

∂h
∂x1

(x∗) =
∂U
∂x2

∂h
∂x2

(x∗) = µ

µ (known as a Lagrange multiplier) is thus the rate of change in optimal output resulting from the change
of the constraint (I). We can rewrite the equalities from above to give us:

∂U

∂x1
(x∗)− µ ∂h

∂x1
(x∗) = 0

∂U

∂x2
(x∗)− µ ∂h

∂x2
(x∗) = 0

This gives us two equations with three unknowns (x1, x2, and µ). Adding the constraint gives us another
equation:

∂U

∂x1
(x∗)− µ ∂h

∂x1
(x∗) = 0 (1)

∂U

∂x2
(x∗)− µ ∂h

∂x2
(x∗) = 0 (2)

h(x∗1, x
∗
2) = I (3)

We can represent the constrained optimization problem as one function (called the Lagrangian function):

L(x1, x2, µ) = U(x1, x2)− µ(h(x1, x2)− I)

We have reduced this constrained optimization down to one function, but at the cost of introducing one
more variable (µ). Notice that taking the first order conditions of the Lagrangian yield same equations,
namely equations (1) - (3), that we derived above. Solving for (x∗, y∗, z∗) using these FOCs give us
critical points of the Lagrangian.
We can then extend this idea by adding more equality constraints. Consider the optimization problem
that has m equality constraints:

max
x

U(x) subject to h1(x) = c1, . . . , hm(x) = cm

The Lagrangian becomes:

L(x1, x2, µ1, . . . , µn) = U(x1, x2)− µ1(h1(x1, x2)− c1)− . . .− µm(hm(x1, x2)− cm)

The first order conditions are thus:

∂L

∂x1
:
∂U

∂x1
(x∗)− µ ∂h

∂x1
(x∗) = 0

∂L

∂x2
:
∂U

∂x2
(x∗)− µ ∂h

∂x2
(x∗) = 0

∂L

∂µi
: hi(x

∗) = ci for i = 1, 2, . . . , n

Solve the following utility max problem:

max
x1,x2

x1x2 subject to x1 + 4x2 = 16

First let’s form the Lagrangian:

L(x1, x2, µ) = x1x2 − µ(x1 + 4x2 − 16)
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The first order conditions are:

∂L

∂x1
: x2 − µ = 0

∂L

∂x2
: x1 − 4µ = 0

∂L

∂µ
: − (x1 + 4x2 − 16) = 0

Solving for µ in the first FOC gives us µ = x2. Plugging this into the second FOC yields: x1 = 4x2.
Now we can plug this into the third FOC (the budget constraint) to get x1 = 8, x2 = 2, µ = 2.

(8, 2) is the arg max for this utility max problem.

1.3 Inequality Constraints

Now we focus on the case when the constraints are inequalities. Consider the following optimization
problem with one inequality constraint:

max
x

U(x) subject to g(x) ≤ b

The Lagrangian function is thus:

L(x, λ) = U(x)− λ[g(x)− b]

With the inequality constraint, g(x) ≤ b, it could either be the case that g(x) = b (the constraint is
binding), or g(x) < b (the constraint is not binding). Notice that when the constraint is not binding,
the constrained critical point will be the same as the unconstrained critical point. As opposed to the
optimization with equality constraints, the first order condition for the Lagrange multiplier will not be
part of our calculations for x∗. However, we can use the complementary slackness condition to solve for
x∗:

λ[g(x)− b] = 0

Notice that either λ = 0, or g(x)− b = 0. So the equations we can use to solve for x∗ are:

∂L

∂x1
:
∂U

∂x1
(x∗)− µ ∂h

∂x1
(x∗) = 0

∂L

∂x2
:
∂U

∂x2
(x∗)− µ ∂h

∂x2
(x∗) = 0

λ∗[g(x∗)− b] = 0

λ∗ ≥ 0

g(x∗) ≤ b

1.4 Karush Kuhn Tucker Conditions

Extending the previous optimization problem, we now consider the following optimization problem.
Optimization problems of this form are very common economics:

max
x

U(x) subject to g1(x) ≤ b1, . . . , gk(x) ≤ bk,

x1 ≥ 0, . . . , xn ≥ 0

The Lagrangian function is thus:

L(x, λ1, . . . , λk, ν1, . . . , νn) = U(x)− λ1[g1(x)− b1]− . . .− λ1[g1(x)− b1] + ν1x1 + . . .+ νnxn
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The Karush Kuhn Tucker conditions are then:

∂L

∂x1
:
∂U

∂x1
(x∗)− µ ∂h

∂x1
(x∗) = 0

∂L

∂x2
:
∂U

∂x2
(x∗)− µ ∂h

∂x2
(x∗) = 0

λ∗1[g1(x∗)− b1] = 0

...

λ∗k[gk(x∗)− bk] = 0

ν1x1 = 0

...

νnxn = 0

λ∗1, . . . , λ
∗
k, ν

∗
1 , . . . , ν

∗
n ≥ 0

g1(x∗) ≤ b1
...

gk(x∗) ≤ bk

Example

Find the Karush Kuhn Tucker (KKT) conditions for the following optimization problem:

max
x,y,z

xyz subject to x+ y + z ≤ 1

x ≥ 0

y ≥ 0

z ≥ 0

The Lagrangian is then:

L(x, λ, νx, νy, νz) = xyz − λ[x+ y + z − 1] + νxx+ νyy + νzz

The KKT conditions are then:

∂L

∂x
: yz − λ+ νx = 0

∂L

∂y
: xz − λ+ νy = 0

∂L

∂z
: yz − λ+ νz = 0

λ[x+ y + z − 1] = 0

νxx = 0

νyy = 0

νzz = 0

λ, νx, νy, νz ≥ 0

x+ y + z ≤ 1

We could also include the following conditions: x ≥ 0, y ≥ 0, z ≥ 0
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Exercises

1. The Cobb-Douglas utility function is given by U(x1, x2) = kxα1x
1−α
2 where x1 and x2 are two

goods. Assume a consumer’s budget set is p1x1 + p2x2 ≤ I. Do the following:

(a) List the Karush Kuhn Tucker conditions for the problem above.

(b) Solve for x1, x2, and the Lagrangian multiplier.

2. Consider the following production function: y = f(x1, x2, . . . , xn) =
∏n
i=1 x

αi
i for i = 1, 2, . . . , n

where ai > 0 and
∑n
i=1 αi = 1. The firm maximizes profits under perfect competition (in other

words price or output, p > 0, and prices of inputs, wi > 0, are exogenous or given):

max
x1,x2,...,xn

pf(x1, x2, . . . , xn)−
n∑
i=1

wixi

(a) Solve for the maximizer (x∗1, x
∗
2, . . . , x

∗
n)

(b) Show that x∗i is homogenous of degree 0 (for prices p and wi’s). What does this mean?
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