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1 Matrix Algebra

To add or subtract matrices together, the matrices must be of the same size. The results from
these two operations will result in a matrix that is the same size of the matrices operated on. The
addition or subtraction of matrices is done entrywise.

Addition

a11 . . . a1n
...

. . .
...

am1 . . . amn

+

 b11 . . . b1n
...

. . .
...

bm1 . . . bmn

 =

 a11 + b11 . . . a1n + b1n
...

. . .
...

am1 + bm1 . . . amn + bmn

 (1)

Subtraction

a11 . . . a1n
...

. . .
...

am1 . . . amn

−
 b11 . . . b1n

...
. . .

...
bm1 . . . bmn

 =

 a11 − b11 . . . a1n − b1n
...

. . .
...

am1 − bm1 . . . amn − bmn

 (2)

Scalar Multiplication

c ·

a11 . . . a1n
...

. . .
...

am1 . . . amn

 =

 ca11 . . . ca1n
...

. . .
...

cam1 ... camn

 (3)
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Matrix Multiplication

a11 . . . a1m
...

. . .
...

ak1 . . . akm

 ·
 b11 . . . b1n

...
. . .

...
bm1 . . . bmn

 = (4)


a11 · b11 + ... + a1m · bm1 . . . a11 · b1n + ... + a1m · bmn

...
. . .

...

ak1 · b11 + ... + akm · bm1 . . . ak1 · b1n + ... + akm · bmn

 (5)

Matrix Multiplication Properties

1. A(BC) = (AB)C

2. A(B + C) = AB + AC

3. (B + C)A = BA + CA

4. c(AB) = (cA)B = A(cB)

5. Ak = A ·A · . . . ·A

Transposes

When a matrix is transposed, the rows and columns are interchanged.

a11 a12 . . . a1n
...

...
. . .

...
am1 am2 . . . amn


T

= (6)


a11 . . . am1

a12 . . . am2
...

. . .
...

a1n . . . amn

 (7)

Transpose Properties

1. (AB)T = BTAT

2. (AT )T = A

3. (cA)T = c(A)T

4. (A + B)T = AT + BT

5. (AT )−1 = (A−1)T

6. |AT |= |A|

7. If A has only real values, then ATA is positive-semidefinite
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Advanced Practice

1. Show that (AB)T = BTAT ⇒ (ABC)T = CTBTAT

2. Prove that if A has only real values, then ATA is positive-semidefinite

Trace

The trace of an n× n matrix, donated tr, is the sum of the (main) diagonal. If A =

[
3 7
2 8

]
, then

tr(A) = 11.

Determinants

It is a bit difficult to describe what a determinant is, but this discussion on stack exchange seems
to give the most intuitive idea. A determinant can only be computed for a square matrix. The
determinant for a matrix, A, can either be denoted as |A| or det(A).

The determinant of a scalar a is just a.

The determinant of a 2× 2 matrix

[
a11 a12
a21 a22

]
is:

a11a22 − a21a12

The determinant of a 3× 3 matrix

a11 a12 a13
a21 a22 a23
a31 a32 a33

 is:

−11+1 · a11
∣∣∣∣a22 a23
a32 a33

∣∣∣∣+−11+2 · a12
∣∣∣∣a21 a23
a31 a33

∣∣∣∣+−11+3 · a13
∣∣∣∣a21 a22
a31 a32

∣∣∣∣
Note

We don’t have to use the first row to calculate the determinant of a matrix that’s bigger than
2 × 2. For example, if I chose to use the 2nd column, the determinant for the matrix above
would now be:

−11+2 · a12
∣∣∣∣a21 a23
a31 a33

∣∣∣∣+−12+2 · a22
∣∣∣∣a11 a13
a31 a33

∣∣∣∣+−13+2 · a32
∣∣∣∣a11 a13
a21 a23

∣∣∣∣
If the determinant of a square matrix is nonzero, then that matrix is nonsingular.

Properties

• |A|= |AT |

• |A||B|= |AB|
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Practice

Use the definition of a determinant for an n × n matrix to show that the determinant of a
2× 2 matrix (which was defined earlier) is equal to a11a22 − a21a12.

Inverses

An n× n matrix A is invertible if there exists an n× n matrix B such that:

AB = BA = In (8)

where In is an n× n identity matrix (described in the special matrices section).

Inverse Properties

1. (A−1)−1 = A

2. (AT )−1 = (A−1)T

3. (cA)−1 = c−1A−1

4. If A, B, and C are invertible n× n matrices, then (ABC)−1 = C−1B−1A−1

5. |A−1|= |A|−1

6. A−1A = AA−1 = I

7. A−1 = 1
|A|adj(A)

The Invertible Matrix Theorem

The following properties for an n× n matrix A are equivalent (if one is true, all are true; if one is
false, all are false):

• A is invertible

• AT is invertible

• A has n leading coefficients

• There exists a matrix B such that AB = I

• There exists a matrix C such that CA = I

• The equation Ax = b has at least one solution for each b in Rn.

• The equation Ax = 0 only has the trivial solution. In other words x =
[
0 0 . . . 0

]T
• A is row equivalent to an n× n identity matrix

• The columns of A span Rn

• The columns of A are linearly independent

• A is full rank
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One way to find the inverse a matrix is to use the formula below:

A−1 =
1

|A|
adj(A)

If A is the following matrix: a11 a12 a13
a21 a22 a23
a31 a32 a33


Then:

C =



∣∣∣∣a22 a23
a32 a33

∣∣∣∣ −
∣∣∣∣a11 a21
a31 a33

∣∣∣∣ ∣∣∣∣a21 a23
a31 a33

∣∣∣∣
−
∣∣∣∣a12 a13
a32 a33

∣∣∣∣ ∣∣∣∣a11 a13
a31 a33

∣∣∣∣ −
∣∣∣∣a11 a12
a31 a32

∣∣∣∣
∣∣∣∣a12 a13
a22 a23

∣∣∣∣ −
∣∣∣∣a11 a13
a21 a23

∣∣∣∣ ∣∣∣∣a11 a12
a21 a22

∣∣∣∣


(9)

And adj(A) = CT .

Practice 1

Problem 8.22. Note: A−2 can also be written as (A−1)2

Problem 9.2

Practice 2

Use the method outlined above to invert the following matrix:[
4 3
1 1

]

Practice 3

Use the method outlined above to invert the following matrix:1 2 3
0 5 6
1 0 8



Some Derivatives of Matrices

The following examples show how to take derivatives when matrices are involved (I have only
included 2 of the most relevant examples, I encourage you to further explore other properties). Let
X be an n× k matrix, y be a n× 1, and b be k × 1.
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1. ∂b′X′Xb
∂b = 2X ′Xb

2. ∂b′X′y
∂b = X ′y

Note

More advanced matrix techniques can be found at this link

1.0.1 Special Matrices

Square Matrix

The number of rows (n) equals the number of columns (n) for the matrix. The following is an
example of a square matrix: 10 5 9

4 4 3
6 17 2

 (10)

Symmetric Matrix

A symmetric matrix has the following property: AT = A. This means that aij = aji for all i, j.
Notice that this implies that a symmetric matrix has to be a square matrix (n× n). The following
is an example of a symmetric matrix: 1 5 6

5 4 7
6 7 2

 (11)

Idempotent Matrix

An idempotent matrix (A) has the following property: AA = A

Identity Matrix

An n × n identity matrix (either donated as I or In) has 1’s on the diagonal and 0’s elsewhere.
Example: 1 0 0

0 1 0
0 0 1

 (12)

Multiplying any matrix by an identity matrix will return that matrix.

AI = A (13)

IB = B (14)

Nonsingular Matrix

Another name for an invertible matrix is a nonsingular matrix. A nonsingular matrix has a nonzero
determinant.
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Orthogonal Matrix

A square matrix, Q, is orthogonal if:

QTQ = QQT = I

Notice that this definition implies that QT = Q−1.

Partition Matrix

A partitioned matrix is a matrix that is broken up into partitions (also called blocks). a11 a12 a13
a21 a22 a23
a31 a32 a33


=

[
A11 A12

A21 A22

]
In order to perform certain operations we need to have our partitioned matrices partitioned appro-
priately.
Addition and subtraction: If we are adding A + B or subtracting A − B, we need them to be
the same size. Also, they need to be partition the same way. a11 a12 a13

a21 a22 a23
a31 a32 a33


=

[
A11 A12

A21 A22

]
 b11 b12 b13

b21 b22 b23
b31 b32 b33


=

[
B11 B12

B21 B22

]
Thus, A + B will be defined as: [

A11 + B11 A12 + B12

A21 + B21 A22 + B22

]

Matrix Multiplication: We can also matrix multiply two partitioned matrices. Notice that if we
are multiply AB, the number of columns in A has to be equal to the number of rows in B. If this
is satisfied, We can used partitioned matrices and treat the submatrices as elements. If X and Y
are m× n matrices, and after partitioning they are defined as:

X =

[
A B
C D

]
Y =

[
E
F

]
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Then it follows that XY is defined as:

XY =

[
AE + BF
CE + DF

]
Notice that this implies that the number of columns of A has to be equal to the number of rows in
E and F , and also the number of columns in B has to be equal to the number of rows in E and F .

2 Linear Spaces

Recall that R is the set of all real numbers. Rn where n ≥ 1 is a set that contains all n-tuples of
real numbers. In other words, a vector in Rn would contain n elements that are in R.

Note

A set of the form Rn is often referred to as an Euclidean space.

Vector Space

A vector space is a collection of vectors which can either be added or scalar multiplied. A vector
space is a non-empty set V that has the following properties (assuming v, w, z ∈ V ):

1. u + v ∈ V

2. cv ∈ V

3. u + v = v + u

4. (u + v) + w = u + (v + w)

5. a(bw) = (ab)w where a, b ∈ R

6. 0 ∈ V such that v + 0 = v

7. For every v ∈ V , there exists a w ∈ V such that v + w = 0

8. Iv = v

9. c(v + w) = cv + cw for all c ∈ R

10. (k + c)u = ku + cu for all k, c ∈ R

The vector space that we most commonly work with is Rn.

Practice

Show that the set Rn is a vector space.
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Subspace

A subset U of V is called a subspace of V if it is also a vector space. To check if U is a subspace,
you only need to check that the following properties hold:

1. Additive Identity: 0 ∈ U

2. Closed under addition: u + v ∈ U if u, v ∈ U

3. Closed under multiplication: if a ∈ R and u ∈ U , then au ∈ U

When we get to the proof sections, we will look at different subsets, and you will be asked to show
whether different subsets are subspaces.

Example

Is the subset {0} where 0 ∈ Rn a subspace of Rn?
We need to check that the 3 properties above hold:

1. 0 ∈ {0}

2. 0 + 0 = 0 ∈ {0}

3. a0 = 0 ∈ {0}
Since the properties hold, {0} is a subspace of Rn.
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3 Exercises

1. Let A be a 3× 3 matrix with det(A) = 6. Find each of the following if possible:

(a) det(AT )

(b) det(A + I)

(c) det(3A)

(d) det(A4)

2. A property of traces is that tr(AB) = tr(BA). Using this property, show that tr(ABC) =
tr(CBA) = tr(ACB).

3. This problem was taken from last year’s problem set. It is such a great problem I felt that I
needed to include it. Please do not look at last year’s solution.

Let X be a n × k real matrix. Define projection matrix P := X(X ′X)−1X ′ and orthogonal
matrix M := In − P . (You can assume (X ′X)−1 exists.)

(a) Show that P and M are symmetric and idempotent.

(b) Show that tr(P ) = k, tr(M) = n− k.

4. Let V be defined as follows:

V =

{[
x
y

]
: x ≥ 0, y ≥ 0

}
Surprise, surprise, V is not a vector space. Show by counterexample which properties (which
are listed in the notes) are violated.
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