WSU Economics PhD Mathcamp Notes

Joe Patten

July 26, 2019

These notes are to accompany Mathematics for Economists by Simon and Blume.

1 Logic

1.1 Statements

A statement is a declarative sentence or assertion that is either true or false. They are often labelled with a capital letter (P, Q, R are most commonly used). Below are examples of statements:

 P_1 : The integer 6 is even. P_2 : A square has 5 sides.

Notice that the first statement is true, whereas the second statement is false.

1.2 Open Sentences

An **open sentence** is similar to a statement, except it contains one or more variables. Below are examples of open sentences:

 P_3 : The integer k is even. P_4 : A square has j sides.

Notice that in the first open sentence, there exists many values of k where the statement holds true. In the second open sentence, the statement holds true only if j = 4.

1.3 Negation

The **negation** of a statement (or proposition) P is denoted by $\sim P$ or $\neg P$, and is pronounced "not P". $\sim P$ is the opposite of P. The example below shows a statement P_5 , and its negation $\sim P_5$:

 P_5 : The integer 7 is odd. ~ P_5 : The integer 7 is even.

Recall that a statement or open sentence can only take on one of two values: true or false. Thus, the negation of a statement or open sentence will take on the opposite truth value. This can be seen in the following truth table:

P	$\sim P$
Т	F
F	Т

Table 1: Truth table for P and $\sim P$.

2 Logical Connectives

2.1 Disjunction

The **disjunction** of the statements P and Q is denoted as $P \vee Q$ is defined as the statement P or Q. $P \vee Q$ is true if either P or Q is true, otherwise it is false. Notice that from the first example, $P_1 \vee P_2$ is true since P_1 is true and P_2 is false. Below is a truth table for $P \vee Q$.

P	Q	$P \lor Q$
Т	Т	Т
Т	F	Т
\mathbf{F}	Т	Т
F	F	F

Table 2: Truth table for $P \lor Q$.

2.2 Conjunction

The **conjunction** of the statements P and Q is denoted as $P \wedge Q$ is defined as the statement P and Q. $P \wedge Q$ is true if either P and Q are both true, otherwise it is false. Notice that from the first example, $P_1 \wedge P_2$ is false since P_1 is true and P_2 is false. Below is a truth table for $P \wedge Q$.

P	Q	$P \wedge Q$
Т	Т	Т
Т	\mathbf{F}	F
F	Т	F
F	\mathbf{F}	\mathbf{F}

Table 3: Truth table for $P \wedge Q$.

2.3 Implication and Biconditional

An **implication** is usually denoted as $P \Rightarrow Q$, and means either "If P, then Q" or "P implies Q". Below is a truth table for $P \Rightarrow Q$.

There are multiple ways of expressing $P \Rightarrow Q$:

$$\begin{array}{c} P \text{ implies } Q \\ \text{If } P, \text{ then } Q \\ P \text{ only if } Q \\ P \text{ is sufficient for } Q \\ Q \text{ if } P \\ Q \text{ is necessary for } P \end{array}$$

P	Q	$P \Rightarrow Q$
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

Table 4: Truth table for $P \Rightarrow Q$.

 $Q \Rightarrow P$ is called the **converse** of $P \Rightarrow Q$. If $P \Rightarrow Q$ is true, it's not necessarily the case that its converse, $Q \Rightarrow P$, is true.

A **biconditional** of P and Q is usually denoted by $P \Leftrightarrow Q$, and means $(P \Rightarrow Q) \land (Q \Rightarrow P)$. There are multiple ways of expressing $P \Rightarrow Q$:

 $\begin{array}{c} P \text{ if and only if } Q \\ P \text{ iff } Q \\ P \text{ is equivalent to } Q \end{array}$

Below is a truth table for $P \Leftrightarrow Q$:

P	Q	$P \Rightarrow Q$	$P \Leftarrow Q$	$P \Leftrightarrow Q$
Т	Т	Т	Т	Т
Т	F	F	Т	F
F	Т	Т	\mathbf{F}	F
F	F	Т	Т	Т

Table 5: Truth table for $P \Leftrightarrow Q$.

2.4 Compound Statements

The operators explained before $(\sim, \lor, \land, \Rightarrow, \Leftrightarrow, \text{ and } \Leftrightarrow)$ are referred to as logical connectors. The combination of at least one statement and at least one connector is called a **compound statement**. Notice that the following are compound statements:

$$\begin{array}{c} \sim P \\ P \lor Q \\ P \Rightarrow Q \\ (P \land Q) \land (Q \Rightarrow \sim P) \end{array}$$

2.5 Tautologies

A compound statement is a **tautology** if all possible truth values are true. An example of a tautology is $P \lor (\sim P)$. The following truth table shows that all the possible truth values are true:

2.6 Contradictions

A compound statement is a **contradiction** if all possible truth values are false. An example of a contradiction is $P \wedge (\sim P)$. The following truth table shows that all the possible truth values are true:

P	$\sim P$	$P \lor (\sim P)$
Т	F	Т
\mathbf{F}	Т	Т

Table 6: Truth table for $P \lor (\sim P)$.

P	$\sim P$	$P \wedge (\sim P)$
Т	F	F
F	Т	\mathbf{F}

Table 7: Truth table for $P \wedge (\sim P)$.

2.7 Logical Equivalence

Two compound statements R and S are **logically equivalent** if they have the same truth values in a truth table. If R and S are logically equivalent, then we write $R \equiv S$. For example, we see that $P \implies Q$ and $(\sim P) \lor Q$ are logically equivalent as all truth values for $P \implies Q$ and $(\sim P) \lor Q$ are the same:

ſ	P	Q	$P \Rightarrow Q$	$\sim P$	$(\sim P) \lor Q$
	Т	Т	Т	F	Т
	Т	F	\mathbf{F}	F	\mathbf{F}
	\mathbf{F}	Т	\mathbf{T}	Т	\mathbf{T}
	F	F	Т	Т	Т

Table 8: Truth table for $P \Leftrightarrow Q$.

2.8 De Morgan's Laws

De Morgan's Laws are defined as:

1.
$$\sim (P \lor Q) \equiv (\sim P) \land (\sim Q)$$

2. $\sim (P \land Q) \equiv (\sim P) \lor (\sim Q)$

Let's show that $\sim (P \lor Q)$ and $(\sim P) \land (\sim Q)$ are logically equivalent.

P	Q	$P \lor Q$	$\sim P$	$\sim Q$	$\sim (P \lor Q)$	$(\sim P) \land (\sim Q)$
Т	Т	Т	F	F	\mathbf{F}	\mathbf{F}
T	\mathbf{F}	Т	F	Т	\mathbf{F}	\mathbf{F}
F	Т	Т	Т	F	\mathbf{F}	\mathbf{F}
F	F	F	Т	Т	Т	Т

Table 9: Truth table for $\sim (P \lor Q) \equiv (\sim P) \land (\sim Q)$.

Practice

What is the negation of the following statement (given we are working with the set of integers, \mathbb{Z}): x is an odd integer, and y is an odd integer.

Exercises

Note: These exercises will be on problem set 2.

Set Theory

- 1. Show that $\overline{A \cap B} = \overline{A} \cup \overline{B}$.
- 2. Show that $A (B \cap C) = (A B) \cup (A C)$.

Logic

- 3. State the negation of the following statements:
 - (a) $\sqrt{3}$ is a rational number.
 - (b) x is an even integer, or y is an odd integer.
- 4. Complete the following truth table:

P	Q	$\sim Q$	$P \wedge (\sim Q)$
Т	Т		
Т	F		
F	Т		
F	F		

5. Show that $\sim (P \land Q) \equiv (\sim P) \lor (\sim Q)$ are logically equivalent.