WSU Economics PhD Mathcamp Notes

Joe Patten

July 26, 2019

These notes are to accompany Mathematics for Economists by Simon and Blume.

1 Proofs

Before we discuss proofs, we need to introduce some terminology. An **axiom** is a true statement that is accepted without proof. A **theorem** is a true statement that can be proven. Oftentimes, the term theorem is only used when talking about statements that have some sort of significance or importance. A **corollary** is a result that can be derived or deduced from a previous result. A **lemma** is a result that is used to establish another result.

1.1 Direct Proof

A direct proof, sometimes called a constructive proof, is a method of proof that is used to show $P \Rightarrow Q$. In a direct proof, we assume P to be true, and through a number of statements make our way to a statement that shows that Q is true. In order to demonstrate how to go about doing a direct proof, I shall present a few properties about integers:

- 1. The negative or any integer is also an integer
- 2. The summation of any two integers results is an integer
- 3. The product of any two integers results in an integer
- 4. Any even number can be written in the form: 2k, where $k \in \mathbb{Z}$
- 5. Any odd number can be written in the form: 2k + 1, where $k \in \mathbb{Z}$

Example 1 Let $n \in \mathbb{Z}$. If n is odd, then 5n + 9 is even.

Result 1 Assume *n* is odd. Thus *n* can be written in the following form: 2k + 1 where $k \in \mathbb{Z}$. This means that 5n + 9 = 5(2k + 1) + 9 = 10k + 14 = 2(5k + 7). Notice that since $(5k + 7) \in \mathbb{Z}$, therefore 5n + 9 is even.

Example 2 Let $n \in \mathbb{Z}$. If n is even, then -3n - 5 is odd.

Result 2 Assume *n* is even.

Thus *n* can be written in the following form: 2k where $k \in \mathbb{Z}$. This means that -3n - 5 = -3(2k) - 5 = -6k - 5 = -6k - 5 = -6k - 6 + 1 = 2(-3k - 3) + 1. Notice that since $(-3k - 3) \in \mathbb{Z}$, therefore -3n - 5 is odd.

1.2 Proof by Contrapositive

The **contrapositive** for an implication $P \Rightarrow Q$ is defined as $(\sim Q) \Rightarrow (\sim P)$. Notice that $(\sim Q) \Rightarrow (\sim P)$ is the logical equivalent of $P \Rightarrow Q$. Proofs by contrapositive are very similar to direct proofs. The only difference is that we start with $\sim Q$ and and through a number of statements make our way to a statement that shows that $\sim P$ is true. Proofs by contrapositive are often used when it is easier to work with $\sim Q$ then it is to work with P.

Example 1 Let $n \in \mathbb{Z}$. If 3n - 9 is even, then n is odd

```
Result 1 Assume n is even.
```

Thus *n* can be written in the following form: 2k where $k \in \mathbb{Z}$ This means that 3n - 9 = 3(2k) - 9 = 6k - 9 = 2(3k - 5) + 1Since $(3k - 10) \in \mathbb{Z}$, it follows that 3n - 9 is odd.

Example 2 Let $n \in \mathbb{Z}$. 9n - 5 is even if and only if n is odd.

Result 2 When a biconditional is involved, we need to prove both directions. In other words, we need to prove that $(9x - 5 \text{ is even}) \Rightarrow (n \text{ is odd})$, and $(n \text{ is odd}) \Rightarrow (9x - 5 \text{ is even})$. We will first show that $(9x - 5 \text{ is even}) \Rightarrow (n \text{ is odd})$.

 $\Rightarrow) (9n-5 \text{ is even}) \Rightarrow (n \text{ is odd})$ Assume n is even. Thus n can be written in the following form: 2k where $k \in \mathbb{Z}$ This means that 9n-5=9(2k)-5=2(9k-3)+1Since $9k-3 \in \mathbb{Z}$, it follows that 9n-5 is odd.

 $\begin{array}{l} \Leftarrow) \ (n \ \text{is odd}) \Rightarrow (9n-5 \ \text{is even}) \\ \text{Assume } n \ \text{is odd.} \\ \text{Thus } n \ \text{can be written in the following form: } 2m \ \text{where } m \in \mathbb{Z} \\ \text{This means that } 9n-5=9(2m+1)-5=2(9m-2) \\ \text{Since } 9m-2 \in \mathbb{Z}, \ \text{it follows that } 9n-5 \ \text{is even.} \end{array}$

1.3 Cases

Oftentimes, it is easier to break the domain of a premise into subsets. The prover then works through the proof for each subset or **case**. Notice that these subsets need to exhaust the domain, meaning every point or element in the domain needs to be covered by a case. The following are examples of cases that could be used for their domains.

Example 1: $\forall x \in \mathbb{R}$: Case 1: x > 0Case 2: x < 0Case 3: x = 0Example 2: $\forall n \in \mathbb{Z}$: Case 1: n is odd Case 2: n is even

Example 3: Let $m, n \in \mathbb{Z}$. If mn is odd, then m and n are odd.

Result Assume m or n are even. Then, either m is even and n is odd, n is even and m is odd, or both m and n are even.

Case 1: Assume *m* and *n* are even. Thus m = 2r and n = 2s where $r, s \in \mathbb{Z}$. Therefore $mn = 2r \cdot 2s = 4rs = 2(rs)$. Since $rs \in \mathbb{Z}$, it follows that mn is even. **Case 2:** Assume without loss of generality that *m* is even and *n* is odd. Thus m = 2t and n = 2u + 1 where $t, u \in \mathbb{Z}$. Therefore $mn = 2t \cdot (2u + 1) = 4tu + 2t = 2(2tu + t)$. Since $2tu + t \in \mathbb{Z}$, it follows that mn is even.

Notice that in the previous example, we had three cases: either m is even and n is odd, n is even and m is odd, or both m and n are even. However, we only walked through 2 cases: both m and nare even, and m is even and n is odd. In case 2, we used the phrase **without loss of generality**, because both the cases of m is even and n is odd, and n is even and m is odd are similar, and so the proof of one case will be sufficient to cover the two cases.

1.4 Proof by Contradiction

If we are trying to prove $P \Rightarrow Q$, we assume both P and $\sim Q$ are true, and then we try to deduce a contradiction $(R \land (\sim R))$. We usually start the proof by saying "Assume to the contrary..." or "Assume by contradiction that..." followed by P and $\sim Q$.

Example 1 Let $n \in \mathbb{Z}$. If n is even, then 5n + 3 is odd.

Result 1 Assume to the contrary that there exists an even integer n such that 5n + 3 is even. Since n is even, we can write n = 2k where $k \in \mathbb{Z}$. Thus, 5n + 3 = 5(2k) + 3 = 10k + 3 = 2(5k + 1) + 1. Since $(5k+1) \in \mathbb{Z}$, then 5n+3 is odd, which is a contradiction.

Example 2 Show that 100 cannot be written as a sum of one odd integer and two even integers.

Result 2 Assume to the contrary that 100 can be written as a sum of one odd integer and two even integers.

Thus, 100 = (2k+1) + (2m) + (2j) where $k, n, j \in \mathbb{Z}$. 100 = (2k + 1) + (2m) + (2j) = 2(k + m + j) + 1.Since $k + m + j \in \mathbb{Z}$, we see that 100 is odd. This is a contradiction.

1.5Counterexample

We have used direct proof, proof by contrapositive, and proof by contradiction to show that $P \Rightarrow Q$. However, it is not always the case that $P \Rightarrow Q$. If we can find an x in the domain of the premise P such that Q is false, then it is not the case that $P \Rightarrow Q$.

Example 1 Disprove the following statement:

If
$$x \in \mathbb{Z}$$
, then $\frac{x^2 + 2x}{x^2 - 3x} = \frac{x + 2}{x - 3}$

Result To disprove the statement above, we only need to provide a counterexample in the domain

of P, in this case, an $x \in \mathbb{R}$ where the expression does not hold. Consider x = 0. We see that $\frac{x^2 + 2x}{x^2 - 3x}$ is undefined at x = 0, however, $\frac{x+2}{x-3} = -\frac{2}{3}$ when x = 0. Thus, x = 0 is a counterexample to the statement above.

1.6Mathematical Induction

Let P(n) be a statement, where $n \in \mathbb{N}$. To prove by induction, we need to prove two things:

- 1. A base case (usual base case is n = 1)
- 2. The inductive step: $\forall k \in \mathbb{N}$, the implication: $P(k) \Rightarrow P(k+1)$ is true.

Example 1 Show that the sum of the first n positive integers is n(n+1)/2. Or in other words:

$$1 + 2 + 3 + 4 + \dots + n = n(n+1)/2$$

Result 1 Let P(n): 1 + 2 + 3 + 4 + ... + n = n(n+1)/2 where $n \in \mathbb{N}$

- 1. **Base case**: P(1): 1 = 1(1+1)/2 = 1. Thus the base case is true.
- 2. Inductive step: Assume P(k) is true, thus:

$$P(k): 1 + 2 + 3 + 4 + \dots + k = k(k+1)/2$$

Now we show that P(k+1) is true, or that $1+2+3+4+\ldots+k+(k+1) = (k+1)(k+2)/2$ $1+2+3+4+\ldots+k+(k+1) = k(k+1)/2+(k+1) = k(k+1)/2+2(k+1)/2 = (k+2)(k+1)/2$ By induction, P(n) is true for every integer n.

Exercises

- 1. Let $n \in \mathbb{Z}$. Prove that if n is even, then 7n 9 is odd.
- 2. Let $a, b, m \in \mathbb{Z}$. Prove that if $2a + 3b \ge 12m + 1$, then $a \ge 3m + 1$ or $b \ge 2m + 1$.
- 3. Let $a, b \in \mathbb{Z}$. Prove that if a + b and ab are of the same parity (either both are even or both are odd), then a and b are even.
- 4. Disprove the following statement. If $x, y \in \mathbb{R}$, then log(xy) = log(x) + log(y).