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1 Proofs

Before we discuss proofs, we need to introduce some terminology. An axiom is a true statement
that is accepted without proof. A theorem is a true statement that can be proven. Oftentimes,
the term theorem is only used when talking about statements that have some sort of significance
or importance. A corollary is a result that can be derived or deduced from a previous result. A
lemma is a result that is used to establish another result.

1.1 Direct Proof

A direct proof, sometimes called a constructive proof, is a method of proof that is used to show
P ⇒ Q. In a direct proof, we assume P to be true, and through a number of statements make our
way to a statement that shows that Q is true. In order to demonstrate how to go about doing a
direct proof, I shall present a few properties about integers:

1. The negative or any integer is also an integer

2. The summation of any two integers results is an integer

3. The product of any two integers results in an integer

4. Any even number can be written in the form: 2k, where k ∈ Z

5. Any odd number can be written in the form: 2k + 1, where k ∈ Z

Example 1 Let n ∈ Z. If n is odd, then 5n + 9 is even.

Result 1 Assume n is odd.
Thus n can be written in the following form: 2k + 1 where k ∈ Z.
This means that 5n + 9 = 5(2k + 1) + 9 = 10k + 14 = 2(5k + 7).
Notice that since (5k + 7) ∈ Z, therefore 5n + 9 is even.

Example 2 Let n ∈ Z. If n is even, then −3n− 5 is odd.
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Result 2 Assume n is even.
Thus n can be written in the following form: 2k where k ∈ Z.
This means that −3n− 5 = −3(2k)− 5 = −6k− 5 = −6k− 5 = −6k− 6 + 1 = 2(−3k− 3) + 1.
Notice that since (−3k − 3) ∈ Z, therefore −3n− 5 is odd.

1.2 Proof by Contrapositive

The contrapositive for an implication P ⇒ Q is defined as (∼ Q) ⇒ (∼ P ). Notice that
(∼ Q) ⇒ (∼ P ) is the logical equivalent of P ⇒ Q. Proofs by contrapositive are very similar
to direct proofs. The only difference is that we start with ∼ Q and and through a number of
statements make our way to a statement that shows that ∼ P is true. Proofs by contrapositive are
often used when it is easier to work with ∼ Q then it is to work with P .

Example 1 Let n ∈ Z. If 3n− 9 is even, then n is odd

Result 1 Assume n is even.
Thus n can be written in the following form: 2k where k ∈ Z
This means that 3n− 9 = 3(2k)− 9 = 6k − 9 = 2(3k − 5) + 1
Since (3k − 10) ∈ Z, it follows that 3n− 9 is odd.

Example 2 Let n ∈ Z. 9n− 5 is even if and only if n is odd.

Result 2 When a biconditional is involved, we need to prove both directions. In other words, we
need to prove that (9x− 5 is even) ⇒ (n is odd), and (n is odd) ⇒ (9x− 5 is even). We will first
show that (9x− 5 is even) ⇒ (n is odd).

⇒) (9n− 5 is even) ⇒ (n is odd)
Assume n is even.
Thus n can be written in the following form: 2k where k ∈ Z
This means that 9n− 5 = 9(2k)− 5 = 2(9k − 3) + 1
Since 9k − 3 ∈ Z, it follows that 9n− 5 is odd.

⇐) (n is odd) ⇒ (9n− 5 is even)
Assume n is odd.
Thus n can be written in the following form: 2m where m ∈ Z
This means that 9n− 5 = 9(2m + 1)− 5 = 2(9m− 2)
Since 9m− 2 ∈ Z, it follows that 9n− 5 is even.

1.3 Cases

Oftentimes, it is easier to break the domain of a premise into subsets. The prover then works
through the proof for each subset or case. Notice that these subsets need to exhaust the domain,
meaning every point or element in the domain needs to be covered by a case. The following are
examples of cases that could be used for their domains.
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Example 1: ∀x ∈ R:

Case 1: x > 0

Case 2: x < 0

Case 3: x = 0

Example 2: ∀n ∈ Z:

Case 1: n is odd

Case 2: n is even

Example 3: Let m,n ∈ Z. If mn is odd, then m and n are odd.

Result Assume m or n are even. Then, either m is even and n is odd, n is even and m is odd,
or both m and n are even.

Case 1: Assume m and n are even.
Thus m = 2r and n = 2s where r, s ∈ Z.
Therefore mn = 2r · 2s = 4rs = 2(rs).
Since rs ∈ Z, it follows that mn is even.
Case 2: Assume without loss of generality that m is even and n is odd.
Thus m = 2t and n = 2u + 1 where t, u ∈ Z.
Therefore mn = 2t · (2u + 1) = 4tu + 2t = 2(2tu + t).
Since 2tu + t ∈ Z, it follows that mn is even.

Notice that in the previous example, we had three cases: either m is even and n is odd, n is even
and m is odd, or both m and n are even. However, we only walked through 2 cases: both m and n
are even, and m is even and n is odd. In case 2, we used the phrase without loss of generality,
because both the cases of m is even and n is odd, and n is even and m is odd are similar, and so
the proof of one case will be sufficient to cover the two cases.

1.4 Proof by Contradiction

If we are trying to prove P ⇒ Q, we assume both P and ∼ Q are true, and then we try to deduce
a contradiction (R ∧ (∼ R) ). We usually start the proof by saying “Assume to the contrary...” or
“Assume by contradiction that...” followed by P and ∼ Q.

Example 1 Let n ∈ Z. If n is even, then 5n + 3 is odd.
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Result 1 Assume to the contrary that there exists an even integer n such that 5n + 3 is even.
Since n is even, we can write n = 2k where k ∈ Z.
Thus, 5n + 3 = 5(2k) + 3 = 10k + 3 = 2(5k + 1) + 1.
Since (5k + 1) ∈ Z, then 5n + 3 is odd, which is a contradiction.

Example 2 Show that 100 cannot be written as a sum of one odd integer and two even integers.

Result 2 Assume to the contrary that 100 can be written as a sum of one odd integer and two
even integers.

Thus, 100 = (2k + 1) + (2m) + (2j) where k, n, j ∈ Z.
100 = (2k + 1) + (2m) + (2j) = 2(k + m + j) + 1.
Since k + m + j ∈ Z, we see that 100 is odd. This is a contradiction.

1.5 Counterexample

We have used direct proof, proof by contrapositive, and proof by contradiction to show that P ⇒ Q.
However, it is not always the case that P ⇒ Q. If we can find an x in the domain of the premise
P such that Q is false, then it is not the case that P ⇒ Q.

Example 1 Disprove the following statement:

If x ∈ Z, then
x2 + 2x

x2 − 3x
=

x + 2

x− 3

Result To disprove the statement above, we only need to provide a counterexample in the domain
of P , in this case, an x ∈ R where the expression does not hold.
Consider x = 0. We see that x2+2x

x2−3x
is undefined at x = 0, however, x+2

x−3 = −2
3 when x = 0. Thus,

x = 0 is a counterexample to the statement above.

1.6 Mathematical Induction

Let P(n) be a statement, where n ∈ N. To prove by induction, we need to prove two things:

1. A base case (usual base case is n = 1)

2. The inductive step: ∀k ∈ N, the implication: P (k)⇒ P (k + 1) is true.

Example 1 Show that the sum of the first n positive integers is n(n + 1)/2. Or in other words:

1 + 2 + 3 + 4 + ... + n = n(n + 1)/2
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Result 1 Let P (n) : 1 + 2 + 3 + 4 + ... + n = n(n + 1)/2 where n ∈ N

1. Base case: P (1) : 1 = 1(1 + 1)/2 = 1. Thus the base case is true.

2. Inductive step: Assume P (k) is true, thus:

P (k) : 1 + 2 + 3 + 4 + ... + k = k(k + 1)/2

Now we show that P (k + 1) is true, or that 1 + 2 + 3 + 4 + ...+ k + (k + 1) = (k + 1)(k + 2)/2
1+2+3+4+ ...+k+(k+1) = k(k+1)/2+(k+1) = k(k+1)/2+2(k+1)/2 = (k+2)(k+1)/2
By induction, P (n) is true for every integer n.
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Exercises

1. Let n ∈ Z. Prove that if n is even, then 7n− 9 is odd.

2. Let a, b,m ∈ Z. Prove that if 2a + 3b ≥ 12m + 1, then a ≥ 3m + 1 or b ≥ 2m + 1.

3. Let a, b ∈ Z. Prove that if a + b and ab are of the same parity (either both are even or both
are odd), then a and b are even.

4. Disprove the following statement. If x, y ∈ R, then log(xy) = log(x) + log(y).

6


	Proofs
	Direct Proof
	Proof by Contrapositive
	Cases
	Proof by Contradiction
	Counterexample
	Mathematical Induction


