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1 Proofs

1.1 Mathematical Induction

Let P(n) be a statement, where n ∈ N. To prove by induction, we need to prove two things:

1. A base case (usual base case is n = 1)

2. The inductive step: ∀k ∈ N, the implication: P (k)⇒ P (k + 1) is true.

Example 1

Show that the sum of the first n positive integers is n(n+ 1)/2. Or in other words:

1 + 2 + 3 + 4 + ...+ n = n(n+ 1)/2

Proof Let P (n) : 1 + 2 + 3 + 4 + ...+ n = n(n+ 1)/2 where n ∈ N

1. Base case: P (1) : 1 = 1(1 + 1)/2 = 1. Thus the base case is true.

2. Inductive step: Assume P (k) is true for some k ∈ N, thus:

P (k) : 1 + 2 + 3 + 4 + ...+ k = k(k + 1)/2

Now we show that P (k+1) is true, or that 1+2+3+4+...+k+(k+1) = (k+1)(k+2)/2
1+2+3+4+...+k+(k+1) = k(k+1)/2+(k+1) = k(k+1)/2+2(k+1)/2 = (k+2)(k+1)/2
By induction, P (n) is true for every (postive) integer n.

Example 2

Show that for every positive n,

1

2 · 3
+

1

3 · 4
+ . . .+

1

(n+ 1)(n+ 2)

Proof Let P (n) : 1
2·3 + 1

3·4 + . . .+ 1
(n+1)(n+2) = n

2n+4 where n ∈ N

1. Base case: P (1) : 1 = 1
2·3 = 1

6 . Thus the base case is true.
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2. Inductive step: Assume P (k) is true for some k ∈ N, thus:

P (k) :
1

2 · 3
+

1

3 · 4
+ . . .+

1

(k + 1)(k + 2)

Now we show that P (k + 1) is true, or that

1

2 · 3
+

1

3 · 4
+ . . .+

1

(k + 1)(k + 2)
+

1

(k + 2)(k + 3)
=

k + 1

2(k + 1) + 4

Now we show that P (k + 1) is true:

1

2 · 3
+

1

3 · 4
+ . . .+

1

(k + 1)(k + 2)
+

1

(k + 2)(k + 3)
=

k

2k + 4
+

1

(k + 2)(k + 3)

=
k

2(k + 2)
+

1

(k + 2)(k + 3)

=
k(k + 3)

2(k + 2)(k + 3)
+

2

2(k + 2)(k + 3)

=
k2 + 3k + 2

2(k + 2)(k + 3)

=
(k + 1)(k + 2)

2(k + 2)(k + 3)

=
(k + 1)

2(k + 3)

=
(k + 1)

2(k + 1) + 4

By induction, P (n) is true for every positive integer n.

Example 3

Show for every nonnegative integer n:

2n > n

Proof Let P (n) : 2n > n where n ∈ N ∪ {0}

1. Base case: P (1) : 20 > 0. Thus the base case is true.

2. Inductive step: Assume P (k) is true for some k ∈ N ∪ {0}, thus:

P (k) : 2k > k

Now we show that P (k + 1) is true, or that 2k+1 > k + 1. Notice for k ≥ 1:
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2k > k

2 · 2k > 2k

= k + k

≥ k + 1 since k ≥ 1

Thus 2k+1 > k + 1. By induction, P (n) is true for every (positive) integer n.

Example 4

Show for sets A1, A2, . . . , An where n ≥ 2, then:

A1 ∪A2 ∪ . . . ∪An = A1 ∪A2 ∪ . . . ∪An

Proof

1. Base case: Notice that the base case, A1 ∪A2 = A1 ∪A2

2. Inductive step: Assume P (k) is true for some k ≥ 2, thus:

A1 ∪A2 ∪ . . . ∪Ak = A1 ∪A2 ∪ . . . ∪Ak

Now we show that P (k + 1) is true, or that k ≥ 3:

A1 ∪A2 ∪ . . . ∪Ak ∪Ak+1 = A1 ∪A2 ∪ . . . ∪Ak ∪Ak+1

Let T = A1 ∪A2 ∪ . . . ∪Ak. Thus (given P (k)), we find that:

T ∪Ak+1 = T ∩Ak+1

Or in other words:

A1 ∪A2 ∪ . . . ∪Ak ∪Ak+1 = A1 ∪A2 ∪ . . . ∪Ak ∪Ak+1

Thus, by induction, P (n) is true for every n ≥ 2.
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2 Relations

A (binary) relation, R, from set A to set B is a subset of A × B. Since R is a subset of A × B,
it is a set of ordered pairs. If a ∈ A and b ∈ B, we say (a, b) ∈ R if a is related to b. We can also
write aRb if this holds. If an ordered pair (c, d) ∈ A × B is not in the relation R, then we could
write either (c, d) 6∈ R or c 6R d.

Example

If A = {t, u, v} and B = {1, 2}, we see that:

A×B = {(t, 1), (t, 2), (u, 1), (u, 2), (v, 1), (v, 2)}

An example of an relation R would be:

R = {(t, 2), (u, 1), (u, 2)}

Notice that R ⊆ (A×B)

If R is the relation from A to B, then the domain of R is a subset of A defined by:

domR = {a ∈ A : (a, b) ∈ R for some b ∈ B}

Likewise, the range is a subset of B defined by:

ranR = {b ∈ B : (a, b) ∈ R for some a ∈ A}

The inverse of a relation R from A to B, is denoted R−1, and is defined as:

R−1 = {(b, a) ∈ B ×A : (a, b) ∈ R}

Lastly, we can define a relation R from A to A. When we do so, we just call R a relation on A.

2.1 Properties of Relations

Below are some possible properties of a relation R on X:

1. R is reflexive ⇔ xRx for any x ∈ X.

2. R is transitive ⇔ (xRy and yRz ⇒ xRz) for any x, y, z ∈ X

3. R is symmetric ⇔ xRy and yRx for any x, y ∈ X

4. R is complete ⇔ xRy or yRx for any x, y ∈ X

5. R is antisymmetric ⇔ (xRy and yRx ⇔ x = y) for any x, y ∈ X

Practice

Let S = {a, b, c}. Which of the properties reflexive, transitive, and symmetric do the relations
below possess if the relations are from S to S?

1. R1 = {(a, c), (c, a), (a, b), (b, a), (b, c), (c, b), (a, a), (b, b), (c, c)}

4



2. R2 = {(a, c), (c, a), (a, b), (b, a), (b, c), (c, b), (a, a)}

3. R3 = {(b, c), (c, b), (a, a), (b, b), (c, c)}

Relations can often be defined using set builder notation. Below is an example of a relation from
R to R:

R4 = {(a, b) ∈ R2 : a > b}

Notice that (2, 1), (
√

5,−3), (π, 0) ∈ R4 since 2 > 1,
√

5 > −3, and π > 0.
However, (2, 4), (−2, 3.4), (−3,

√
5) 6∈ R4 since 2 6> 4,−2 6> 3.4, and − 3 6>

√
5.

C

onsider the relation R4, namely R4 = {(a, b) ∈ R2 : a > b}. Which properties reflexive,
symmetric, and transitive does the relation R4 possess?

• R4 is not reflexive as (a, a) /∈ R4 since a ≯ a for any a ∈ R.

• R4 is not symmetric. Counterexample, let a = 5 and b = 3. Notice that (5, 3) ∈ R4 but
(3, 5) /∈ R4.

• R4 is transitive as it holds that if a > b and b > c, then a > c.

Practice

Consider S ∈ R. Let the following be relations from S to S. Show that the following relations
are reflexive, transitive, and symmetric. If a property does not hold, provide a counterexample
to show that that property does not hold.

1. R5 = {(a, b) ∈ S × S : a ≥ b}

2. R6 = {(a, b) ∈ S × S : a > b}

3. R7 = {(a, b) ∈ S × S : ab ≥ 0}
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Exercises

1. Let X1, X2, . . . , Xn be matrices where n ∈ N. Using mathematical induction, show that
(X1X2 . . . Xn)T = XT

n . . . X
T
2 X

T
1 .

2. Using mathematical induction, show that 1 + 1
4 + 1

9 + . . .+ 1
n2 ≤ 2− 1

n where n ∈ N.

3. A relation R is defined on Z by aRb if |a−b|≤ 2. Which of the properties reflexive, symmetric,
and transitive does the relation R possess? Justify your answers.
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