WSU Economics PhD Mathcamp Notes

Joe Patten

July 30, 2019

These notes are to accompany Mathematics for Economists by Simon and Blume.

1 Proofs

1.1 Mathematical Induction

Let P(n) be a statement, where $n \in \mathbb{N}$. To prove by induction, we need to prove two things:

- 1. A base case (usual base case is n = 1)
- 2. The inductive step: $\forall k \in \mathbb{N}$, the implication: $P(k) \Rightarrow P(k+1)$ is true.

Example 1

Show that the sum of the first n positive integers is n(n+1)/2. Or in other words:

$$1 + 2 + 3 + 4 + \dots + n = n(n+1)/2$$

Proof Let P(n): 1 + 2 + 3 + 4 + ... + n = n(n+1)/2 where $n \in \mathbb{N}$

- 1. **Base case**: P(1): 1 = 1(1+1)/2 = 1. Thus the base case is true.
- 2. Inductive step: Assume P(k) is true for some $k \in \mathbb{N}$, thus:

$$P(k): 1 + 2 + 3 + 4 + \dots + k = k(k+1)/2$$

Now we show that P(k+1) is true, or that $1+2+3+4+\ldots+k+(k+1) = (k+1)(k+2)/2$ $1+2+3+4+\ldots+k+(k+1) = k(k+1)/2+(k+1) = k(k+1)/2+2(k+1)/2 = (k+2)(k+1)/2$ By induction, P(n) is true for every (postive) integer n.

Example 2

Show that for every positive n,

$$\frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} + \ldots + \frac{1}{(n+1)(n+2)}$$

Proof Let $P(n): \frac{1}{2\cdot 3} + \frac{1}{3\cdot 4} + \ldots + \frac{1}{(n+1)(n+2)} = \frac{n}{2n+4}$ where $n \in \mathbb{N}$

1. Base case: $P(1): 1 = \frac{1}{2 \cdot 3} = \frac{1}{6}$. Thus the base case is true.

2. Inductive step: Assume P(k) is true for some $k \in \mathbb{N}$, thus:

$$P(k): \frac{1}{2\cdot 3} + \frac{1}{3\cdot 4} + \ldots + \frac{1}{(k+1)(k+2)}$$

Now we show that P(k+1) is true, or that

$$\frac{1}{2\cdot 3} + \frac{1}{3\cdot 4} + \ldots + \frac{1}{(k+1)(k+2)} + \frac{1}{(k+2)(k+3)} = \frac{k+1}{2(k+1)+4}$$

Now we show that P(k+1) is true:

$$\begin{aligned} \frac{1}{2\cdot 3} + \frac{1}{3\cdot 4} + \ldots + \frac{1}{(k+1)(k+2)} + \frac{1}{(k+2)(k+3)} &= \frac{k}{2k+4} + \frac{1}{(k+2)(k+3)} \\ &= \frac{k}{2(k+2)} + \frac{1}{(k+2)(k+3)} \\ &= \frac{k(k+3)}{2(k+2)(k+3)} + \frac{2}{2(k+2)(k+3)} \\ &= \frac{k^2 + 3k + 2}{2(k+2)(k+3)} \\ &= \frac{(k+1)(k+2)}{2(k+2)(k+3)} \\ &= \frac{(k+1)}{2(k+3)} \\ &= \frac{(k+1)}{2(k+1) + 4} \end{aligned}$$

By induction, P(n) is true for every positive integer n.

Example 3

Show for every nonnegative integer n:

 $2^n > n$

Proof Let $P(n): 2^n > n$ where $n \in \mathbb{N} \cup \{0\}$

1. **Base case**: $P(1): 2^0 > 0$. Thus the base case is true.

2. Inductive step: Assume P(k) is true for some $k \in \mathbb{N} \cup \{0\}$, thus:

 $P(k): 2^k > k$

Now we show that P(k+1) is true, or that $2^{k+1} > k+1$. Notice for $k \ge 1$:

 $2^k > k$ $2 \cdot 2^k > 2k$ = k + k $\geq k + 1 \text{ since } k \geq 1$

Thus $2^{k+1} > k+1$. By induction, P(n) is true for every (positive) integer n.

Example 4

Show for sets A_1, A_2, \ldots, A_n where $n \ge 2$, then:

$$\overline{A_1 \cup A_2 \cup \ldots \cup A_n} = \overline{A_1} \cup \overline{A_2} \cup \ldots \cup \overline{A_n}$$

Proof

- 1. **Base case**: Notice that the base case, $\overline{A_1 \cup A_2} = \overline{A_1} \cup \overline{A_2}$
- 2. Inductive step: Assume P(k) is true for some $k \ge 2$, thus:

$$\overline{A_1 \cup A_2 \cup \ldots \cup A_k} = \overline{A_1} \cup \overline{A_2} \cup \ldots \cup \overline{A_k}$$

Now we show that P(k+1) is true, or that $k \ge 3$:

$$A_1 \cup A_2 \cup \ldots \cup A_k \cup A_{k+1} = A_1 \cup A_2 \cup \ldots \cup A_k \cup A_{k+1}$$

Let $T = A_1 \cup A_2 \cup \ldots \cup A_k$. Thus (given P(k)), we find that:

 $\overline{T \cup A_{k+1}} = \overline{T} \cap \overline{A_{k+1}}$

Or in other words:

$$\overline{A_1 \cup A_2 \cup \ldots \cup A_k \cup A_{k+1}} = \overline{A_1} \cup \overline{A_2} \cup \ldots \cup A_k \cup \overline{A_{k+1}}$$

Thus, by induction, P(n) is true for every $n \ge 2$.

2 Relations

A (binary) relation, R, from set A to set B is a subset of $A \times B$. Since R is a subset of $A \times B$, it is a set of ordered pairs. If $a \in A$ and $b \in B$, we say $(a, b) \in R$ if a is related to b. We can also write aRb if this holds. If an ordered pair $(c, d) \in A \times B$ is not in the relation R, then we could write either $(c, d) \notin R$ or $c \not R d$.

Example

If $A = \{t, u, v\}$ and $B = \{1, 2\}$, we see that:

 $A \times B = \{(t, 1), (t, 2), (u, 1), (u, 2), (v, 1), (v, 2)\}$

An example of an relation R would be:

$$R = \{(t, 2), (u, 1), (u, 2)\}\$$

Notice that $R \subseteq (A \times B)$

If R is the relation from A to B, then the domain of R is a subset of A defined by:

 $\operatorname{dom} R = \{a \in A : (a, b) \in R \text{ for some } b \in B\}$

Likewise, the range is a subset of B defined by:

$$\operatorname{ran} R = \{ b \in B : (a, b) \in R \text{ for some } a \in A \}$$

The inverse of a relation R from A to B, is denoted R^{-1} , and is defined as:

$$R^{-1} = \{(b, a) \in B \times A : (a, b) \in R\}$$

Lastly, we can define a relation R from A to A. When we do so, we just call R a relation on A.

2.1 **Properties of Relations**

Below are some possible properties of a relation R on X:

- 1. *R* is **reflexive** \Leftrightarrow *xRx* for any *x* \in *X*.
- 2. *R* is **transitive** \Leftrightarrow (*xRy* and *yRz* \Rightarrow *xRz*) for any *x*, *y*, *z* \in *X*
- 3. *R* is symmetric $\Leftrightarrow xRy$ and yRx for any $x, y \in X$
- 4. *R* is **complete** \Leftrightarrow *xRy* or *yRx* for any *x*, *y* \in *X*
- 5. *R* is **antisymmetric** \Leftrightarrow (*xRy* and *yRx* \Leftrightarrow *x* = *y*) for any *x*, *y* \in *X*

Practice

Let $S = \{a, b, c\}$. Which of the properties reflexive, transitive, and symmetric do the relations below possess if the relations are from S to S?

1.
$$R_1 = \{(a,c), (c,a), (a,b), (b,a), (b,c), (c,b), (a,a), (b,b), (c,c)\}$$

- 2. $R_2 = \{(a,c), (c,a), (a,b), (b,a), (b,c), (c,b), (a,a)\}$
- 3. $R_3 = \{(b,c), (c,b), (a,a), (b,b), (c,c)\}$

Relations can often be defined using set builder notation. Below is an example of a relation from \mathbb{R} to \mathbb{R} :

$$R_4 = \{(a, b) \in \mathbb{R}^2 : a > b\}$$

Notice that $(2,1), (\sqrt{5},-3), (\pi,0) \in R_4$ since $2 > 1, \sqrt{5} > -3$, and $\pi > 0$. However, $(2,4), (-2,3.4), (-3,\sqrt{5}) \notin R_4$ since $2 \neq 4, -2 \neq 3.4$, and $-3 \neq \sqrt{5}$.

$$\mathbf{C}$$

onsider the relation R_4 , namely $R_4 = \{(a, b) \in \mathbb{R}^2 : a > b\}$. Which properties reflexive, symmetric, and transitive does the relation R_4 possess?

- R_4 is not reflexive as $(a, a) \notin R_4$ since $a \neq a$ for any $a \in \mathbb{R}$.
- R_4 is not symmetric. Counterexample, let a = 5 and b = 3. Notice that $(5,3) \in R_4$ but $(3,5) \notin R_4$.
- R_4 is transitive as it holds that if a > b and b > c, then a > c.

Practice

Consider $S \in \mathbb{R}$. Let the following be relations from S to S. Show that the following relations are reflexive, transitive, and symmetric. If a property does not hold, provide a counterexample to show that that property does not hold.

- 1. $R_5 = \{(a, b) \in S \times S : a \ge b\}$
- 2. $R_6 = \{(a, b) \in S \times S : a > b\}$
- 3. $R_7 = \{(a, b) \in S \times S : ab \ge 0\}$

Exercises

- 1. Let X_1, X_2, \ldots, X_n be matrices where $n \in \mathbb{N}$. Using mathematical induction, show that $(X_1 X_2 \ldots X_n)^T = X_n^T \ldots X_2^T X_1^T$.
- 2. Using mathematical induction, show that $1 + \frac{1}{4} + \frac{1}{9} + \ldots + \frac{1}{n^2} \leq 2 \frac{1}{n}$ where $n \in \mathbb{N}$.
- 3. A relation R is defined on Z by aRb if $|a-b| \le 2$. Which of the properties reflexive, symmetric, and transitive does the relation R possess? Justify your answers.