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Show that (1) is a Cauchy sequence in (R, |-).
Notice that since (R, |:|) is a metric space, then the following inequality holds by the traingle inequality

(property 3):
‘xm - mn‘g |1'm - zm+1‘+|xm+l - xm+2|+--- + |In—1 - In|

Now for our specific sequence, we see that:
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We can play with the inequality above to get a desirable result. Notice that
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We want to show that for every € > 0, then there exists an N € N such that m,n > N where:
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If we set N+1 =¢e¢ = N == —1. Now we can use a more ”formal” proof:

Let € > 0. Choose N such that N > é — 1. Then, for m,n € N such that m,n > N, then:
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