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1 Homogeneity

We say that a function f(x1, x2, ..., xn) is homogeneous of degree k (commonly referred to as HDk) if:

f(αx1, αx2, ..., αxn) = αkf(x1, x2, ..., xn) for all x and all α > 0 (1)

In Economics, when a production is homogeneous of degree 1, it is said to have constant returns to scale
(CRS). If k > 1, the production function has increasing returns to scale, and if k < 1, the production
function has decreasing returns to scale.

Example

Consider the function: f(x, y) = 5x2y3 + 6x6y−1. To determine if this function if homogeneous,
we need to multiply each input by α:

f(αx, αy) = 5(αx)2(αy)3 + 6(αx)6(αy)−1

= α2+35x2y3 + α6−16x6y−1

= α5(5x2y3 + 6x6y−1)

= α5(f(x, y))

This function is homogeneous of degree 5 (HD5).

1.1 Euler’s Theorem

If we take the derivative of both sides of equation (1) by xi, we get the following:

∂f(αx1, αx2, ..., αxn)

∂xi
· α = αk ∂f(x1, x2, ..., xn)

∂xi
∂f(αx1, αx2, ..., αxn)

∂xi
= αk−1 ∂f(x1, x2, ..., xn)

∂xi
(2)

We can use the result from equation (2) to derive Euler’s Thereom:

Theorem 1. If f is a C1, homogeneous of degree k function on Rn
+, then it follows:

x1
∂f(x)

∂x1
+ x2

∂f(x)

∂x2
+ . . .+ xn

∂f(x)

∂xn
= kf(x)

2 Definiteness of Matrix

2.1 Quadratic Form

A function Q : Rn → R is a quadratic form if it is a homogeneous polynomial of degree two. Thus, a
quadratic form can be written as:

Q(x) =

n∑
i=1

n∑
j=1

aijxixj (3)
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where aij ∈ R

Notice that equation (4) can be written using vectors and matrices:

n∑
i=1

n∑
j=1

aijxixj =
(
x1 x2 . . . xn

)


a11 (a12 + a21)/2 . . . (a1n + an1)/2
(a12 + a21)/2 a22 . . . (a2n + an2)/2

...
...

. . .
...

(a1n + an1)/2 (a2n + an2)/2 . . . ann



x1
x2
...
xn

 (4)

= xTAx (5)

Notice that the coefficient matrix, which we will call A, is square and symmetric. There is an infinite
amount of coefficient matrices that would yield the same quadratic form, however, it is convenient to
define A in such a way that it is symmetric.

Example

Let Q(x) = 2x21 + 3x1x2. If we put this in matrix form, we would get the following result:

Q(x) =
(
x1 x2

)(2 3
2

3
2 0

)(
x1
x2

)

Practice

Express the quadratic form Q(x) = −3x21 + 2x1x2 + 4x1x3 − 2x22 + 5x2x3 in matrix form.

2.2 Definiteness

Consider an n× n symmetric matrix A. A is:

positive definite if xTAx > 0 ∀x ∈ Rn − 0
negative definite if xTAx < 0 ∀x ∈ Rn − 0
positive semidefinite if xTAx ≥ 0 ∀x ∈ Rn

negative semidefinite if xTAx ≤ 0 ∀x ∈ Rn

indefinite if xTAx > 0 for some x ∈ Rn,
and xTAx < 0 for some x ∈ Rn

Table 1: Definiteness

2.3 Principal Minors

We can also evaluate the principal minors of A to determine the definiteness of A.

Let A be an n × n matrix. A kth order principal submatrix is k × k and is formed by deleting n − k
rows, and the same n− k columns. Taking the determinant of a kth order principal submatrix yields a
kth order principal minor.

The kth order leading principal submatrix of A, usually written as |Ak|, is the left most submatrix in
A that is k × k. The determinant of the kth order leading principal submatrix is called the kth order
leading principal determinant.

Let A be an n× n matrix. Then,

• A is positive definite iff all of its leading principal minors are positive.

• A is negative definite iff leading principal minors alternate in sign, and the 1st order princiapl
minor is negative.

• A is positive semidefinite iff every principal minor of is is nonnegative.
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• A is negative semidefinite iff every principal minor of odd order is nonpositive, and every principal
minors of even order is nonnegative.

• A is indefinite iff A does not have any of these patterns.

3 Derivatives

Recall from single-variable calculus, the derivative of a function f with respect to x at point x0 is defined
as:

df(x0)

dx
= lim

h→0

f(x0 + h)− f(x0)

h

If this limit exists, then we say that f is differentiable at x0. We can extend this definition to talk about
derivatives of multivariate functions.

3.1 Partial Derivative

Let f : Rn → R. The partial derivative of f with respect to variable xi at x0 is given by:

∂f(x0)

∂xi
= lim

h→0

f(x1, x1, ..., xi + h, ..., xn)− f(x1, x2, ..., xi, ..., xn)

h

Notice that in this definition, the ith variable is affected. To take the partial derivative of variable xi,
we treat all the other variables as constants.

Example

Consider the function: f(x, y) = 4x2y5 + 3x3y2 + 6y + 10.

∂f(x,y)
∂x = 8xy5 + 9x2y2

∂f(x,y)
∂y = 20x2y4 + 6x3y + 6

3.2 Gradient Vector

We can put all of the partials of the function F : Rn → R at x∗ (which we call the derivative of F ) in a
row vector:

DFx∗ =
[
∂F (x∗)
∂x1

. . . ∂F (x∗)
∂xn

]
This can also be referred to as the Jacobian derivative of F.

We can express the derivative in a column vector:

∇Fx∗ =


∂F (x∗)
∂x1

...
∂F (x∗)
∂xn


This representation is usually referred to as the gradient vector.

Example

The gradient vector of our previous example would be:

∇F =

[
8xy5 + 9x2y2

20x2y4 + 6x3y + 6

]
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3.3 Jacobian Matrix

We won’t always be working with functions of the form F : Rn → R. We might work with functions of
the form F : Rn → Rm. A common example example in economics is a production function that has
n inputs and m outputs. Considering the production function example, notice that we can write this
function as m functions:

q1 =f1(x1, x2, ..., xn)

q2 =f2(x1, x2, ..., xn)

...

qm =f1(x1, x2, ..., xn)

We can put the functions and their respective partials in a matrix in order to get the Jacobian Matrix:

DF (x∗) =


∂f1(x

∗)
∂x1

∂f1(x
∗)

∂x2
. . . ∂f1(x

∗)
∂xn

∂f2(x
∗)

∂x1

∂f2(x
∗)

∂x2
. . . ∂f2(x

∗)
∂xn

...
...

. . .
...

∂fm(x∗)
∂x1

∂fm(x∗)
∂x2

. . . ∂fm(x∗)
∂xn


3.4 Hessian Matrix

Recall that for an function of n variables, there are n partial derivatives. We can take partial derivatives
of each partial derivative. The partial derivative of a partial derivative is called the second order partial
derivative.

Example

The second order partial derivatives for the example above are defined as:

∂2f(x,y)
∂x2 = 8y5 + 18xy2

∂2f(x,y)
∂y2 = 80x2y3 + 6x3

∂2f(x,y)
∂y∂x = 40xy4 + 18x2y

∂2f(x,y)
∂x∂y = 40xy4 + 18x2y

The second order partial derivatives of the form ∂2f(x,y)
∂x∂y where x 6= y are called the cross partial deriva-

tives. Notice from our example, that ∂2f(x,y)
∂x∂y = ∂2f(x,y)

∂y∂x . This is always the case with cross partials. We
see that:

∂2f(x)

∂xi∂xj
=
∂2f(x)

∂xj∂xi

We can put all of these second order partials into a matrix, which is referred to as the Hessian Matrix:
∂2f(x∗)

∂x2
1

∂2f(x∗)
∂x1∂x2

. . . ∂2f(x∗)
∂x1∂xn

∂2f(x∗)
∂x1∂x2

∂2f(x∗)
∂x2

2
. . . ∂2f(x∗)

∂x2∂xn

...
...

. . .
...

∂2f(x∗)
∂xn∂x1

∂2f(x∗)
∂xn∂x2

. . . ∂2f(x∗)
∂x2

n


Let the function f : A→ R be a C2 function, where A is a convex and open set in Rn.

• f is strictly concave iff its Hessian matrix is positive definite for any x ∈ A.

• f is strictly convex iff its Hessian matrix is negative definite for any x ∈ A.
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• f is (weakly) concave iff its Hessian matrix is positive semidefinite for any x ∈ A.

• f is (weakly) convex iff its Hessian matrix is negative semidefinite for any x ∈ A.

4 Convexity and Concavity

4.1 Convex Sets

A set A, in a real vector space V , is convex iff:

λx1 + (1− λ)x2 ∈ A

for any λ ∈ [0, 1] and any x1, x2 ∈ A.

4.2 Function Concavity and Convexity

Let A be a convex set in vector space V . Consider the function f : A→ R.

1. f is concave iff:

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2) (6)

for any x1, x2 ∈ A and λ ∈ [0, 1].

2. f is convex iff:

f(λx1 + (1− λ)x2) ≥ λf(x1) + (1− λ)f(x2) (7)

for any x1, x2 ∈ A and λ ∈ [0, 1].

3. f is strictly concave iff:

f(λx1 + (1− λ)x2) < λf(x1) + (1− λ)f(x2) (8)

for any x1, x2 ∈ A and λ ∈ [0, 1].

4. f is strictly convex iff:

f(λx1 + (1− λ)x2) > λf(x1) + (1− λ)f(x2) (9)

for any x1, x2 ∈ A and λ ∈ [0, 1].

Note

If a function is not convex, it does not mean that it is concave. Likewise, if a function is not
concave, it does not mean that it is convex.

Practice

Consider f : A → R and g : A → R where A is a convex set in a vector space. If f and g are
concave functions show that:

1. f + g is a concave function.

2. cf is a concave function if c > 0, and a convex function if c < 0.
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4.3 Jensen’s Inequality

Let the function f : A⇒ R where A is a convex set in a vector space, then:

• f is concave iff

f

(
n∑

i=1

λixi

)
≥

n∑
i=1

λif(xi)

• f is convex iff

f

(
n∑

i=1

λixi

)
≤

n∑
i=1

λif(xi)

for any λ1, ..., λn ∈ R+ such that
∑n

i=1 λi = 1 and x1, ..., xn ∈ A

4.4 Quasiconcave and Quasiconvex

Let A be a convex set in vector space V . Consider the function f : A→ R.

1. f is quasiconcave iff:

f(λx1 + (1− λ)x2) ≤ max{f(x1), f(x2)} (10)

for any x1, x2 ∈ A and λ ∈ [0, 1].

2. f is quasiconvex iff:

f(λx1 + (1− λ)x2) ≥ max{f(x1), f(x2)} (11)

for any x1, x2 ∈ A and λ ∈ [0, 1].

3. f is strictly quasiconcave iff:

f(λx1 + (1− λ)x2) < max{f(x1), f(x2)} (12)

for any x1, x2 ∈ A and λ ∈ [0, 1].

4. f is strictly quasiconvex iff:

f(λx1 + (1− λ)x2) > max{f(x1), f(x2)} (13)

for any x1, x2 ∈ A and λ ∈ [0, 1].

Practice

1. Show that if a function f is concave, then f is also quasiconcave.

2. Show that if a function f is convex, then f is also quasiconvex.

4.5 Contour Sets

Let A be a convex set in vector space V . Consider the function f : A → R. An upper contour set of
a ∈ A is defined as:

{x ∈ A : f(x) ≥ a}

A lower contour set of a ∈ A is defined similarly:

{x ∈ A : f(x) ≤ a}

Let A be a convex set in vector space V . Consider the function f : A→ R. Then,

1. f is quasiconcave iff its upper contour set is convex for any a ∈ R

2. f is quasiconvex iff its lower contour set is convex for any a ∈ R
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4.6 Graphs

Let the function f : A→ R. The graph of f is defined as the following set:

G(f) = {(x, y) ∈ A× R : y = f(x)}

The epigraph is the set above the graph, and is defined as:

G+(f) = {(x, y) ∈ A× R : y ≥ f(x)}

The epigraph is the set below the graph, and is defined as:

G−(f) = {(x, y) ∈ A× R : y ≤ f(x)}

The following theorem follows:

1. G−(f) is a convex set iff f is convex.

2. G+(f) is a convex set iff f is concave.

5 Multivariate Calculus

5.1 Derivatives

Let f(x) and g(x) be differentiable functions, and a, n ∈ R. Derivatives have following properties:

1. (af)′ = af ′(x)

2. (f + g) = f ′(x) + g′(x)

3. (fg)′ = f ′g + fg′

4.
(

f
g

)′
= f ′g−fg′

g2

5. d
dx (c) = 0

6. d
dx (f(g(x)) = f ′(g(x))g′(x)

5.2 Integrals

Integrals have the following properties:

1.
∫
af(x)dx = a

∫
f(x)dx

2.
∫

(f + g)dx =
∫
f(x)dx+

∫
g(x)dx

5.3 Integration by Parts

We can use integration by parts to integrate some more complex expressions. The formula for integration
by parts is: ∫

u(x) · v′(x)dx = u(x) · v(x)−
∫
u′(x) · v(x)dx

Example

Using integration by parts, we can integrate the expression xex:

7



Let u(x) = x, and v′(x) = e2x. Thus u′(x) = 1 and v(x) = 1
2e

2x. Using the integration by parts,
we see that: ∫

xe2xdx = x
1

2
e2x −

∫
1 · 1

2
e2xdx

=
1

2

(
xe2x −

∫
e2xdx

)
=

1

2
xe2x − 1

4
e2x + C

where C ∈ R.

5.4 Chain Rule

Let w = f(x, y) where f is a differentiable function of x and y. Let x = g(t) and y = h(t) where g and
h are differentiable functions of t. Then by the chain rule:

dw

dt
=
∂w

∂x

dx

dt
+
∂w

∂y

dy

dt

Example

Let w = x3y2 − x2 and x = et and y = cos(t).

dw

dt
=
∂w

∂x

dx

dt
+
∂w

∂y

dy

dt

=
(
3x2y2 − 2x

) (
et
)

+
(
2x3y

)
(−sin(t))

=
(
3e2tcos2(t)− 2et

) (
et
)
−
(
2e3tcos(t)

)
(sin(t))

5.5 Total Differential

Recall that when we take a partial derivative, we measure a variable’s direct effect on a function (as we
keep all other variables constant). If we also want to take into account a variable’s indirect effect on a
function (i.e. the effect that it has on other variables, which in turn affect the function), then we need
to take a total differential.

Consider z = f(x, y). The total differential of z is given by:

dz =
∂z

∂x
dx+

∂z

∂y
dy

Example

Find the total differential for: z = 2x sin(y)− 3x2y2.

dz =
∂z

∂x
dx+

∂z

∂y
dy

=
(
2 sin(y)− 3x2y2

)
dx+

(
2x cos(y)− 6x2y

)
dy
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5.6 Implicit Differentiation

Consider the equation F (x, y) = 0 where y is defined implicitly as a differentiable function of x. Then,

dy

dx
= −

∂F
∂x
∂F
∂y

Example

Consider xy2 + x3y + 5y − 4 = 0. Find dy
dx :

dy

dx
= −

∂F
∂x
∂F
∂y

= − y2 + 3x2y

2xy + x3 + 5

=
−y2 − 3x2y

2xy + x3 + 5

Practice

Use the chain rule to derive the implicit differentiation problem above.

5.7 Taylor Polynomial

If f is differentiable of order n + 1 on interval I, then there exists z between points x and c, which are
on in the interval I, such that:

f(x) = f(c) + f ′(c)(x− c) +
f ′′(c)

2!
(x− c)2 +

f ′′′(c)

3!
(x− c)3 + . . .+

fn(c)

n!
(x− c)n +Rn(c)

where Rn(c) = fn+1(z)
(n+1)! (x− c)n+1.

Rn(c) is commonly referred to as the remainder or error. There are many uses of the Taylor polynomial.
One use is to approximate the value of a function at a certain point, x, given that you know the value
of the function at a close point, c. The higher the degree of polynomial we use, the closer we will get
the the actual value of f(x). You will notice that in each equation below, I have left out the remainder
term, thus, we get an approximate value for f(x)

First order Taylor polynomial: f(x) ≈ f(c) + f ′(c)(x− c)
Second order Taylor polynomial: f(x) ≈ f(c) + f ′(c)(x− c) + f ′′(c)

2! (x− c)2

Third order Taylor polynomial: f(x) ≈ f(c) + f ′(c)(x− c) + f ′′(c)
2! (x− c)2 + f ′′′(c)

3! (x− c)3

Practice

Given a function is strictly concave, and x > c (i.e. we are given f(c) and approximating f(x)),
show that the approximate value for f(x) using a first order Taylor polynomial is greater than the
actual value of f(x).
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