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1 Relations and Functions

1.1 Properties of Relations

Practice

Let S = {a, b, c}. Which of the properties reflexive, transitive, and symmetric do the relations
below possess if the relations are from S to S?

1. R1 = {(a, c), (c, a), (a, b), (b, a), (b, c), (c, b), (a, a), (b, b), (c, c)}

2. R2 = {(a, c), (c, a), (a, b), (b, a), (b, c), (c, b), (a, a)}

3. R3 = {(b, c), (c, b), (a, a), (b, b), (c, c)}

1. R1 is reflexive, transitive, and symmetric.

2. R2 is only symmetric.

3. R3 is only reflexive.

Practice

Consider S ∈ R. Let the following be relations from S to S. Show that the following relations
are reflexive, transitive, and symmetric. If a property does not hold, provide a counterexample to
show that that property does not hold.

1. R5 = {(a, b) ∈ S × S : a ≥ b}
Let x, y, z ∈ S.

• (x, x) ∈ R5 since x ≥ x, thus R5 is reflexive.

• (x, y) ∈ R5 6⇒ (y, x) ∈ R5. Counterexample: Suppose x = 5 and y = 4. Thus R6 is not
symmetric.

• Suppose (x, y), (y, z) ∈ R5. Thus x ≥ y and y ≥ z. By transitivity of R, it follow that
x ≥ z, thus (x, z) ∈ R5. Therefore R5 is transitive.

2. R6 = {(a, b) ∈ S × S : a > b}
Let x, y, z ∈ S.

• (x, x) 6∈ R6 since x 6> x, thus R6 is not reflexive.

• (x, y) ∈ R6 6⇒ (y, x) ∈ R6. Counterexample: Suppose x = 5 and y = 4. Thus R6 is not
symmetric.

• Suppose (x, y), (y, z) ∈ R6. Thus x > y and y > z. By transitivity of R, it follow that
x > z, thus (x, z) ∈ R6. Therefore R6 is transitive.
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3. R7 = {(a, b) ∈ S × S : ab ≥ 0}
Let x, y, z ∈ S.

• (x, x) ∈ R7 since xx ≥ 0 for all x ∈ R, thus R7 is reflexive.

• Suppose (x, y) ∈ R7, then xy ≥ 0. Notice that xy = yx. Thus yx ≥ 0. So (y, x) ∈ R7.
Thus R7 is symmetric.

• Counterexample: Notice that (−1, 0) ∈ R7, and (0, 5) ∈ R7. However, (−1, 5) 6∈ R7.
Thus R7 is not transitive.

1.2 Monotonic Functions

Practice

Show that the function f(x) = log(x) is strictly increasing for all x ∈ R++, where R++ is defined
as: R++ = {y ∈ R : y > 0}
Let x, y ∈ R++. Without loss of generality, assume x > y. Since x > y, there exists an α ∈ (0, 1)
such that x = αy. We are required to prove that log(x) > log(y). Notice:

log(x) = log(αy)

= log(α) + log(y)

> log(y)

Thus f(x) = log(x) is a strictly increasing function. Notice that we can also look at the derivative
of f(x) and see if it is positive over the whole domain of R++ to see if it is a strictly increasing
function.
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2 Metric Spaces

Practice

1. Show that (R, d1) is a valid metric space.
Let x, y, z ∈ R. where x 6= y 6= z

(a) Notice that |x− x|= 0 and |x− y|> 0.

(b) Notice that |x− y|= |y − x|.
(c) Notice that |x− z|= |(x− y) + (y− z)| ⇒ |x− z|≤ |x− y|+|y− z| since (x− y) ≤ |x− y|

and (y − z) ≤ |y − z|.

2. Show that (R2, d2) is a valid metric space.
Let x, y, z ∈ R2. where x 6= y 6= z

(a) If x 6= y, and x =

(
x1
x2

)
and y =

(
y1
y2

)
. Then either x1 6= y1 or x2 6= y2. Thus

(x1 − y1)2 + (x2 − y2)2 > 0. Therefore ||x− x||= 0 and ||x− y||> 0.

(b) Let x =

(
x1
x2

)
and y =

(
y1
y2

)
. Notice that |x− y|= |y − x|=

(
|x1 − y1|
|x2 − y2|

)
.

(c) Let x =

(
x1
x2

)
, y =

(
y1
y2

)
, and z =

(
z1
z2

)
. Then ||x − z||= ||(x − y) + (y − z)|| ⇒

||x− z||≤ ||x− y||+||y − z|| since (x− y) ≤ ||x− y|| and (y − z) ≤ ||y − z||.

3. Show that (Rn, d3) is a valid metric space.

(a) If x 6= y, then ∃i such that xi 6= yi. Thus d3(x, y) ≥ |x1 − y1|> 0.

(b) Notice that d3(x, y) = max{|x1 − y1|, . . . , |xn − yn|} = max{|y1 − x1|, . . . , |yn − xn|} =
d3(y, x).

(c) Suppose d3(x, y) = |xi − yi|, d3(y, z) = |yj − zj |, and d3(x, z) = |xk − zk| for i, j, k ∈ N.
Notice |xk − zk|≤ |xi − yi|+|yj − zj |. (Further clearification is left up to the reader).

3 More Set Theory
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Practice

Determine the supremum and infimum for each of the following sets in R. Also determine if the
supremum and infimum are equal to the maximum and minimum respectively of each set:

1. [0, 2]
Supremum = maximum = 2
Infimum = minimum = 0

2. (0, 2)
Supremum = 2 6= maximum
Infimum = 0 6= minimum

3. [0, 2] ∪ {3}
Supremum = maximum = 3
Infimum = minimum = 0

4 Sequences

4.1 Sequence Convergence

Practice

Show (via proof) that:

1. lim 2√
2n+4

= 0

Let ε > 0 be arbitrary. Choose N such that N > 4
ε2 . Let n ≥ N . Then:∣∣∣∣ 2√

2n+ 4
− 0

∣∣∣∣ < ε

2. lim 4n+1
2n+4 = 2

Let ε > 0 be arbitrary. Choose N such that N > 5
2ε . Let n ≥ N . Then:∣∣∣∣4n+ 1

2n+ 4
− 2

∣∣∣∣ < ε

4.2 Cauchy Criterion

Practice

Consider the metric space (R, d1). Show that every convergent sequence is a Cauchy sequence.

See Assignment 3 solutions
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5 Topology

5.1 Open Sets

Practice

Using the definition above and assuming the metric space is (R, d1):

1. Show that Bε(a) is an open set.

From the definition of open set, we need to show that for every point in Bε(a), we can make
an open ball around any point, and that open ball must be contained in Bε(a). Consider
y ∈ Bε(a). If we define an open ball around y as Bε1(y), where ε1 = ε − |y − a|, you’ll see
that Bε1(y) ⊆ Bε(a). Thus ⊆ Bε(a). Hence Bε(a) is open.

2. Show that R is an open set.

Pick a y ∈ R, and put a ball of radius ε ∈ R around y. Notice that since ε ∈ R, it is always
that case that Bε(y) ∈ R. Thus R is open.

3. Show that (0, 1) is an open set.

See Assignment 3 solutions.

5.2 Closed Sets

Practice

The set of natural numbers, N, can be written in the form: {1} ∪ {2} ∪ {3} ∪ {4} ∪ ... where {n}
is said to be an isolated point. Is {n} a limit point? What does that tell us about the set N, is it
open, closed, or neither.

{n} where n ∈ N is not a limit point as we can easily find an ε > 0 such that a ball around every
point in the set contains only that point. Thus there are no limit points in the set N. Notice that,
trivially, N contains all of its limit points, so N is closed.

5.3 Open and Closed Sets

Practice

1. Show that the empty set, ∅, is both closed and open.

For the empty set, the set of its limit points is just the empty set. Since ∅ ⊆ ∅, then the ∅
is closed.

Notice that R = ∅. We see that R contains all of its limit points, thus it is closed. Then ∅
is open.

2. Determine if [0, 1] ∪ {2} is open, closed, or neither.

Notice that the set of limit points for [0, 1] ∪ {2} is [0, 1]. Since [0, 1] ⊆ [0, 1] ∪ {2}, then
[0, 1] ∪ {2} is closed.
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5.4 Compact Sets

Practice

Show that for a compact set S ⊆ R, the supremum and infimum or S are elements of S.

Let S ⊆ R. Suppose that S be bounded and let b = supS. For every ε > 0, there exists an s ∈ S
such that b− ε < s. Notice that we have defined an open ball Bε(b), and we see that ∃s ∈ Bε(b)
for any ε > 0. Thus b is a limit point of S. Since S is closed, S must contain all of its limit
points. Therefore b ∈ S. Or in other words, supS ∈ S.

A similar argument can be used to show that inf S ∈ S.

6 Advanced Theorems

6.1 Brouwer’s Fixed Point Theorem

Practice

Using the Intermediate Value Theorem, prove the Brouwer’s Fixed Point Theorem in the metric
space (R, d1)

Assume that f : [a, b] → [a, b] is a continuous function. Notice that since both the domain
and codomain are [a, b], then f(a), f(b) ∈ [a, b]. If f(a) = a or f(b) = b, then we are done
(since both are fixed points). We now need to consider the case when f(a) ∈ (a, b] and f(b) ∈ [a, b).

Suppose WLOG f(a) ≥ f(b). By intermediate value theorem, for an f(x) ∈ [f(a), f(b)], there
exists an x ∈ [a, b].

Drawing a graph helps for intuition. I encourage you to draw one to fully understand what’s going
on.
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