Real Analysis Practice Solutions

Joe Patten

August 12, 2018

1 Relations and Functions

1.1 Properties of Relations

Practice

Let $S = \{a, b, c\}$. Which of the properties reflexive, transitive, and symmetric do the relations below possess if the relations are from S to S?

- 1. $R_1 = \{(a,c), (c,a), (a,b), (b,a), (b,c), (c,b), (a,a), (b,b), (c,c)\}$
- 2. $R_2 = \{(a,c), (c,a), (a,b), (b,a), (b,c), (c,b), (a,a)\}$
- 3. $R_3 = \{(b,c), (c,b), (a,a), (b,b), (c,c)\}$
- 1. R_1 is reflexive, transitive, and symmetric.
- 2. R_2 is only symmetric.
- 3. R_3 is only reflexive.

Practice

Consider $S \in \mathbb{R}$. Let the following be relations from S to S. Show that the following relations are reflexive, transitive, and symmetric. If a property does not hold, provide a counterexample to show that that property does not hold.

- 1. $R_5 = \{(a,b) \in S \times S : a \ge b\}$ Let $x, y, z \in S$.
 - $(x, x) \in R_5$ since $x \ge x$, thus R_5 is reflexive.
 - $(x, y) \in R_5 \neq (y, x) \in R_5$. Counterexample: Suppose x = 5 and y = 4. Thus R_6 is not symmetric.
 - Suppose $(x, y), (y, z) \in R_5$. Thus $x \ge y$ and $y \ge z$. By transitivity of \mathbb{R} , it follow that $x \ge z$, thus $(x, z) \in R_5$. Therefore R_5 is transitive.
- 2. $R_6 = \{(a, b) \in S \times S : a > b\}$ Let $x, y, z \in S$.
 - $(x, x) \notin R_6$ since $x \neq x$, thus R_6 is not reflexive.
 - $(x, y) \in R_6 \neq (y, x) \in R_6$. Counterexample: Suppose x = 5 and y = 4. Thus R_6 is not symmetric.
 - Suppose $(x, y), (y, z) \in R_6$. Thus x > y and y > z. By transitivity of \mathbb{R} , it follow that x > z, thus $(x, z) \in R_6$. Therefore R_6 is transitive.

3. $R_7 = \{(a, b) \in S \times S : ab \ge 0\}$ Let $x, y, z \in S$.

- $(x, x) \in R_7$ since $xx \ge 0$ for all $x \in \mathbb{R}$, thus R_7 is reflexive.
- Suppose $(x, y) \in R_7$, then $xy \ge 0$. Notice that xy = yx. Thus $yx \ge 0$. So $(y, x) \in R_7$. Thus R_7 is symmetric.
- Counterexample: Notice that $(-1,0) \in R_7$, and $(0,5) \in R_7$. However, $(-1,5) \notin R_7$. Thus R_7 is not transitive.

1.2 Monotonic Functions

Practice

Show that the function f(x) = log(x) is strictly increasing for all $x \in \mathbb{R}_{++}$, where \mathbb{R}_{++} is defined as: $\mathbb{R}_{++} = \{y \in \mathbb{R} : y > 0\}$ Let $x, y \in \mathbb{R}_{++}$. Without loss of generality, assume x > y. Since x > y, there exists an $\alpha \in (0, 1)$ such that $x = \alpha y$. We are required to prove that log(x) > log(y). Notice:

$$log(x) = log(\alpha y)$$
$$= log(\alpha) + log(y)$$
$$> log(y)$$

Thus f(x) = log(x) is a strictly increasing function. Notice that we can also look at the derivative of f(x) and see if it is positive over the whole domain of \mathbb{R}_{++} to see if it is a strictly increasing function.

2 Metric Spaces

Practice

- 1. Show that (\mathbb{R}, d_1) is a valid metric space. Let $x, y, z \in \mathbb{R}$. where $x \neq y \neq z$
 - (a) Notice that |x x| = 0 and |x y| > 0.
 - (b) Notice that |x y| = |y x|.
 - (c) Notice that $|x-z| = |(x-y) + (y-z)| \Rightarrow |x-z| \le |x-y| + |y-z|$ since $(x-y) \le |x-y|$ and $(y-z) \le |y-z|$.
- 2. Show that (\mathbb{R}^2, d_2) is a valid metric space. Let $x, y, z \in \mathbb{R}^2$. where $x \neq y \neq z$
 - (a) If $x \neq y$, and $x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ and $y = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$. Then either $x_1 \neq y_1$ or $x_2 \neq y_2$. Thus $(x_1 y_1)^2 + (x_2 y_2)^2 > 0$. Therefore ||x x|| = 0 and ||x y|| > 0.
 - (b) Let $x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ and $y = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$. Notice that $|x y| = |y x| = \begin{pmatrix} |x_1 y_1| \\ |x_2 y_2| \end{pmatrix}$.
 - (c) Let $x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$, $y = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$, and $z = \begin{pmatrix} z_1 \\ z_2 \end{pmatrix}$. Then $||x z|| = ||(x y) + (y z)|| \Rightarrow ||x z|| \le ||x y|| + ||y z||$ since $(x y) \le ||x y||$ and $(y z) \le ||y z||$.
- 3. Show that (\mathbb{R}^n, d_3) is a valid metric space.
 - (a) If $x \neq y$, then $\exists i$ such that $x_i \neq y_i$. Thus $d_3(x, y) \geq |x_1 y_1| > 0$.
 - (b) Notice that $d_3(x, y) = \max\{|x_1 y_1|, \dots, |x_n y_n|\} = \max\{|y_1 x_1|, \dots, |y_n x_n|\} = d_3(y, x).$
 - (c) Suppose $d_3(x,y) = |x_i y_i|$, $d_3(y,z) = |y_j z_j|$, and $d_3(x,z) = |x_k z_k|$ for $i, j, k \in \mathbb{N}$. Notice $|x_k - z_k| \le |x_i - y_i| + |y_j - z_j|$. (Further clearification is left up to the reader).

3 More Set Theory

Practice

Determine the supremum and infimum for each of the following sets in \mathbb{R} . Also determine if the supremum and infimum are equal to the maximum and minimum respectively of each set:

- 1. [0, 2]Supremum = maximum = 2 Infimum = minimum = 0
- 2. (0, 2)Supremum = 2 \neq maximum Infimum = 0 \neq minimum
- 3. $[0,2] \cup \{3\}$ Supremum = maximum = 3 Infimum = minimum = 0

4 Sequences

4.1 Sequence Convergence

Practice

Show (via proof) that:

1. $\lim \frac{2}{\sqrt{2n+4}} = 0$

Let $\varepsilon > 0$ be arbitrary. Choose N such that $N > \frac{4}{\varepsilon^2}$. Let $n \ge N$. Then:

$$\left|\frac{2}{\sqrt{2n+4}} - 0\right| < \varepsilon$$

2. $\lim \frac{4n+1}{2n+4} = 2$

Let $\varepsilon > 0$ be arbitrary. Choose N such that $N > \frac{5}{2\varepsilon}$. Let $n \ge N$. Then:

 $\left|\frac{4n+1}{2n+4}-2\right|<\varepsilon$

4.2 Cauchy Criterion

Practice

Consider the metric space (\mathbb{R}, d_1) . Show that every convergent sequence is a Cauchy sequence.

See Assignment 3 solutions

5 Topology

5.1 Open Sets

Practice

Using the definition above and assuming the metric space is (\mathbb{R}, d_1) :

1. Show that $B_{\varepsilon}(a)$ is an open set.

From the definition of open set, we need to show that for every point in $B_{\varepsilon}(a)$, we can make an open ball around any point, and that open ball must be contained in $B_{\varepsilon}(a)$. Consider $y \in B_{\varepsilon}(a)$. If we define an open ball around y as $B_{\varepsilon_1}(y)$, where $\varepsilon_1 = \varepsilon - |y - a|$, you'll see that $B_{\varepsilon_1}(y) \subseteq B_{\varepsilon}(a)$. Thus $\subseteq B_{\varepsilon}(a)$. Hence $B_{\varepsilon}(a)$ is open.

2. Show that \mathbb{R} is an open set.

Pick a $y \in \mathbb{R}$, and put a ball of radius $\varepsilon \in \mathbb{R}$ around y. Notice that since $\varepsilon \in \mathbb{R}$, it is always that case that $B_{\varepsilon}(y) \in \mathbb{R}$. Thus \mathbb{R} is open.

3. Show that (0, 1) is an open set.

See Assignment 3 solutions.

5.2 Closed Sets

Practice

The set of natural numbers, \mathbb{N} , can be written in the form: $\{1\} \cup \{2\} \cup \{3\} \cup \{4\} \cup ...$ where $\{n\}$ is said to be an isolated point. Is $\{n\}$ a limit point? What does that tell us about the set \mathbb{N} , is it open, closed, or neither.

 $\{n\}$ where $n \in \mathbb{N}$ is not a limit point as we can easily find an $\varepsilon > 0$ such that a ball around every point in the set contains only that point. Thus there are no limit points in the set \mathbb{N} . Notice that, trivially, \mathbb{N} contains all of its limit points, so \mathbb{N} is closed.

5.3 Open and Closed Sets

Practice

1. Show that the empty set, \emptyset , is both closed and open.

For the empty set, the set of its limit points is just the empty set. Since $\emptyset \subseteq \emptyset$, then the \emptyset is closed.

Notice that $\overline{\mathbb{R}} = \emptyset$. We see that \mathbb{R} contains all of its limit points, thus it is closed. Then \emptyset is open.

2. Determine if $[0,1] \cup \{2\}$ is open, closed, or neither. Notice that the set of limit points for $[0,1] \cup \{2\}$ is [0,1]. Since $[0,1] \subseteq [0,1] \cup \{2\}$, then $[0,1] \cup \{2\}$ is closed.

5.4 Compact Sets

Practice

Show that for a compact set $S \subseteq \mathbb{R}$, the supremum and infimum or S are elements of S.

Let $S \subseteq R$. Suppose that S be bounded and let $b = \sup S$. For every $\varepsilon > 0$, there exists an $s \in S$ such that $b - \varepsilon < s$. Notice that we have defined an open ball $B_{\varepsilon}(b)$, and we see that $\exists s \in B_{\varepsilon}(b)$ for any $\varepsilon > 0$. Thus b is a limit point of S. Since S is closed, S must contain all of its limit points. Therefore $b \in S$. Or in other words, $\sup S \in S$.

A similar argument can be used to show that $\inf S \in S$.

6 Advanced Theorems

6.1 Brouwer's Fixed Point Theorem

Practice

Using the Intermediate Value Theorem, prove the Brouwer's Fixed Point Theorem in the metric space (\mathbb{R}, d_1)

Assume that $f : [a, b] \to [a, b]$ is a continuous function. Notice that since both the domain and codomain are [a, b], then $f(a), f(b) \in [a, b]$. If f(a) = a or f(b) = b, then we are done (since both are fixed points). We now need to consider the case when $f(a) \in (a, b]$ and $f(b) \in [a, b)$.

Suppose WLOG $f(a) \ge f(b)$. By intermediate value theorem, for an $f(x) \in [f(a), f(b)]$, there exists an $x \in [a, b]$.

Drawing a graph helps for intuition. I encourage you to draw one to fully understand what's going on.