Assignment 3

Due August 12, 2019

For questions 1 and 2, consider the metric space (\mathbb{R}, d_1) for the following problems, where d_1 is the absolute value metric.

- 1. Using the definition of open ball (or ε -neighborhood). Show that (a, b) , where $a < b$, is an open set.
- 2. Let

$$
B = \left\{ \frac{(-1)^n n}{n+1} : n \in \mathbb{N} \right\}
$$

- (a) Find the limit points of B.
- (b) Is B a closed set? Why or why not?
- (c) Is B an open set? Why or why not?
- 3. Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function on \mathbb{R} . Now assume that there is a $\lambda \in (0,1)$ such that:

$$
|f(x) - f(x')| \le \lambda |x - x'|
$$

for all $x, x' \in \mathbb{R}$

Suppose we start with $y_1 \in \mathbb{R}$ and construct a sequence (y_n) by a applying the function f at each index to the previous element of the sequence. Thus our sequence would look like the following:

$$
(y_n) = (y_1, y_2, y_3, y_4, \ldots)
$$

= $(y_1, f(y_1), f(f(y_1)), f(f(f(y_1))), \ldots)$

Or in other words, $y_{n+1} = f(y_n)$.

You may find the following property of infinite series useful:

$$
\sum_{i=1}^{\infty} ar^i = a \sum_{i=1}^{\infty} r^i = a \left(\frac{1}{1-r} \right)
$$

where $a \in \mathbb{R}$ and $r \in (0,1)$. In other words, this infinite sum is less than the constant: $a\left(\frac{1}{1-r}\right)$.

- (a) Show that the sequence (y_n) is a Cauchy sequence.
- (b) Since (y_n) is a Cauchy sequence, we see that (y_n) is a convergent sequence, or in other words there is a limit point y such that $\lim_{n\to\infty} y_n = y$. Prove that y is a fixed point of f.

4. Determine the definiteness of the following symmetric matrix:

$$
\begin{bmatrix} -1 & 1 & 0 \ 1 & -1 & 0 \ 0 & 0 & -2 \end{bmatrix}
$$

For questions 5 and 6, let A be a convex subset of \mathbb{R}^n where $f : A \to \mathbb{R}$. Let f be concave.

- 5. Show that f is quasiconcave.
- 6. Show that cf is a concave function when $c > 0$, and cf is a convex function when $c < 0$.
- 7. Consider the function $f(x) = \ln(1+x)$.
	- (a) Calculate $f(.5)$.
	- (b) Using a first order Taylor polynomial, approximate $f(.5)$ using $x_0 = 0$.
	- (c) Using a second order Taylor polynomial, approximate $f(.5)$ using $x_0 = 0$.
	- (d) Using a third order Taylor polynomial, approximate $f(.5)$ using $x_0 = 0$.
- 8. Differentiate implicitly to find $\frac{dy}{dx}$:

$$
x^2 - 3xy + y^2 - 2x + y - 5 = 0
$$

9. Find the critical points and classify these as local max, local min, saddle point, or "can't tell":

$$
f(x, y, z) = (x2 + 2y2 + 3z2) e-(x2+y2+z2)
$$

- 10. The Cobb-Douglas utility function is given by $U(x_1, x_2) = kx_1^{\alpha}x_2^{1-\alpha}$ where x_1 and x_2 are two goods. Assume a consumer's budget set is $p_1x_1 + p_2x_2 \leq I$. Do the following:
	- (a) List the Karush Kuhn Tucker conditions for the problem above.
	- (b) Solve for x_1, x_2 , and the Lagrangian multiplier.
- 11. Consider the following production function: $y = f(x_1, x_2, \ldots, x_n) = \prod_{i=1}^n x_i^{\alpha_i}$ for $i =$ $1, 2, \ldots, n$ where $a_i > 0$ and $\sum_{i=1}^{n} \alpha_i = 1$. The firm maximizes profits under perfect competition (in other words price or output, $p > 0$, and prices of inputs, $w_i > 0$, are exogenous or given):

$$
\max_{x_1, x_2, ..., x_n} pf(x_1, x_2, ..., x_n) - \sum_{i=1}^n w_i x_i
$$

- (a) Solve for the maximizer $(x_1^*, x_2^*, \ldots, x_n^*)$
- (b) Show that x_i^* is homogeneous of degree 0 (for prices p and w's). What does this mean?