Instructions: Some questions on this test may be a bit difficult. Relax, and answer all 5 questions to the best of your ability (check every page to make sure you have answered everything). Note that partial solutions will receive partial credit, so putting something for a question will be better than leaving that question blank.

- 1. (10 points) Let $U = x^{\alpha}y^{\beta}$ where $(x,y) \in \mathbb{R}^2_+$, $\alpha + \beta = 1$, and $\alpha, \beta > 0$.
 - (a) Is U homogeneous? If so, of what degree?

$$U(tx, ty) = (tx)^{\alpha} (ty)^{\beta}$$
$$= t^{\alpha} t^{\beta} x^{\alpha} y^{\beta}$$
$$= t^{\alpha+\beta} x^{\alpha} y^{\beta}$$
$$= tx^{\alpha} y^{\beta}$$
$$= tU(x, y)$$

So U is homogeneous of degree 1.

(b) Show that U is concave.

$$\begin{split} DU &= \begin{bmatrix} \alpha x^{\alpha-1} y^{\beta} & \beta x^{\alpha} y^{\beta-1} \end{bmatrix} \\ D^2U &= \begin{bmatrix} \alpha (\alpha-1) x^{\alpha-2} y^{\beta} & \alpha \beta x^{\alpha-1} y^{\beta-1} \\ \alpha \beta x^{\alpha-1} y^{\beta-1} & \beta (\beta-1) x^{\alpha} y^{\beta-2} \end{bmatrix} \end{split}$$

Notice that the first order leading principal minor is ≥ 0 since:

$$\alpha(\alpha - 1)x^{\alpha - 2}y^{\beta} \ge 0$$

So we need to look at all of the principal minors.

First Order Principal Minors:

$$\overline{\alpha(\alpha-1)x^{\alpha-2}y^{\beta} \le 0} \qquad \beta(\beta-1)x^{\alpha}y^{\beta-2} \le 0$$

 D^2U is negative semidefinite. Thus U is concave.

Recall that $\mathbb{R}^2_+ = \{(x, y) \in \mathbb{R}^2 : x \ge 0 \text{ and } y \ge 0\}$

- 2. (5 points) Express the following sets using set-builder notation $\{f(x) \in \mathbb{Z} : p(x)\}$, where f(x) is a function of x, and p(x) is a statement or condition of x.
 - (a) $\{2,4,6,8,\ldots\}$

$$\{2n \in \mathbb{Z} : n > 0\}$$

(b) $\{-27, -8, -1, 0\}$

$$\{n^3 \in \mathbb{Z} : -3 \le n \le 0\}$$

- 3. (5 points) Consider the metric space: $(\mathbb{R}, |\cdot|)$.
 - (a) Show that the interval (0,1) is open.

Notice that the complement of (0,1): $\overline{(0,1)} = (-\infty,0] \cup [1,\infty)$. $(-\infty,0] \cup [1,\infty)$ is closed since it contains all of its limit points (since $(\mathbb{R},|\cdot|)$) is the metric space we are working in). Thus (0,1) is open.

Alternative Solution: See assignment 3 solutions.

(b) Show that the set $\{1, 2, 3\}$ is closed.

Each point in the set $\{1,2,3\}$ is an isolated points. Notice that isolated points are not limit points, thus the set of limit points is: $\{\} = \emptyset$. Since $\emptyset \subseteq \{1,2,3\}$, $\{1,2,3\}$ is closed.

- 4. (10 points) Prove the following:
 - (a) The intersection of two convex sets is convex.

```
Let A and B be two convex sets.

Now let x,y\in A\cap B.

Thus x,y\in A and x,y\in B.

Since x,y\in A, it follows that \lambda x+(1-\lambda)y\in A for \lambda\in[0,1] as A is convex.

Since x,y\in B, it follows that \lambda x+(1-\lambda)y\in B for \lambda\in[0,1] as B is convex.

Finally, \lambda x+(1-\lambda)y\in A and \lambda x+(1-\lambda)y\in B implies that \lambda x+(1-\lambda)y\in A\cap B.

Therefore A\cap B is convex.
```

(b) The maximum of two convex functions is convex. In other words, if the functions f_1 and f_2 are convex, then $\max\{f_1, f_2\}$ is convex.

This question will not be graded.

Let f_1 and f_2 be convex functions and let $f(x) = \max\{f_1(x), f_2(x)\}$. Thus:

$$f_i(\alpha x + (1 - \alpha)y) \le \alpha f_i(x) + (1 - \alpha)f_i \tag{1}$$

for any $\alpha \in [0,1]$ and any $x, y \in \text{Dom}(f_i)$ where $i \in \{1,2\}$ Taking the max of both sides of (1), we get the following:

$$\max_{i} \{f_{i}(\alpha x + (1 - \alpha)y)\} \leq \max_{i} \{\alpha f_{i}(x) + (1 - \alpha)f_{i}(y)\}$$

$$\Rightarrow \max_{i} \{f_{i}(\alpha x + (1 - \alpha)y)\} \leq \max_{i} \{\alpha f_{i}(x)\} + \max_{i} \{(1 - \alpha)f_{i}(y)\}$$

$$\Rightarrow \max_{i} \{f_{i}(\alpha x + (1 - \alpha)y)\} \leq \alpha \max_{i} \{f_{i}(x)\} + (1 - \alpha)\max_{i} \{f_{i}(y)\}$$

$$\Rightarrow f(\alpha x + (1 - \alpha)y) \leq \alpha f(x) + (1 - \alpha)f(y)$$

Therefore, f is convex.

Alternative Solution: Notice that we could use the theorem that says that the epigraph of a function is a convex set iff the function is convex. When we take the maximum of two functions, we are taking an intersection of the two epigraphs (of f_1 and f_2) to form the epigraph of the newly created function (max $\{f_1, f_2\}$). Since the two functions, f_1 and f_2 , are convex, their epigraphs are convex. The intersection of the epigraphs of f_1 and f_2 is convex (as shown in 4a). This intersection is the epigraph of max $\{f_1, f_2\}$. Thus the function defined by max $\{f_1, f_2\}$ is convex.

5. (10 points) Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function on \mathbb{R} . Now assume that there is a $\lambda \in (0,1)$ such that:

$$|f(x) - f(x')| \le \lambda |x - x'|$$

for all $x, x' \in \mathbb{R}$

Suppose we start with $y_1 \in \mathbb{R}$ and construct a sequence (y_n) by a applying the function f at each index to the previous element of the sequence. Thus our sequence would look like the following:

$$(y_n) = (y_1, y_2, y_3, y_4, ...)$$

= $(y_1, f(y_1), f(f(y_1)), f(f(f(y_1)), ...)$

Or in other words, $y_{n+1} = f(y_n)$.

You may find the following property of infinite series useful:

$$\sum_{i=1}^{\infty} ar^{i} = a \sum_{i=1}^{\infty} r^{i} = a \left(\frac{1}{1-r}\right)$$

where $a \in \mathbb{R}$ and $r \in (0,1)$. In other words, this infinite sum is less than the constant: $a\left(\frac{1}{1-r}\right)$.

(a) Show that the sequence (y_n) is a Cauchy sequence.

Notice that you are acutally proving the contraction mapping theorem in $(\mathbb{R}, |\cdot|)$, yay! We need to show that for $\varepsilon > 0$, there exists an $N \in \mathbb{N}$ such that for $m, n \geq N$, it follows that

$$|y_m - y_n| < \varepsilon$$

Assume without loss of generality that n > m where $m, n \in \mathbb{N}$:

$$|y_{m+1} - y_{m+2}| = |f(y_m) - f(y_{m+1})|$$

$$\leq \lambda |y_m - y_{m+1}|$$

where $\lambda \in (0,1)$ Therefore:

$$|y_{m+1} - y_{m+2}| \le \lambda |y_m - y_{m+1}|$$

$$\le \lambda^2 |y_{m-1} - y_m|$$

$$\le \lambda^3 |y_{m-2} - y_{m-1}|$$

$$\vdots$$

$$\le \lambda^m |y_1 - y_2|$$

Thus $|y_{m+1} - y_{m+2}| \le \lambda^m |y_1 - y_2|$ Therefore:

$$|y_{m} - y_{n}| \leq |y_{m} - y_{m+1} + y_{m+1} - y_{m+2} + y_{m+2} - \dots + y_{n-1} - y_{n}|$$

$$\leq |y_{m} - y_{m+1}| + |y_{m+1} - y_{m+2}| + \dots + |y_{n-1} - y_{n}|$$

$$\leq \lambda^{m-1} |y_{1} - y_{2}| + \lambda^{m} |y_{1} - y_{2}| + \dots + \lambda^{n-2} |y_{1} - y_{2}|$$

$$= \lambda^{m-1} (1 + \lambda + \lambda^{2} + \dots + \lambda^{n-m-1}) |y_{1} - y_{2}|$$

$$< \lambda^{m-1} \left(\frac{1}{1 - \lambda}\right) |y_{1} - y_{2}|$$

Let $\varepsilon > 0$ and choose $N \in \mathbb{N}$ such that:

$$\lambda^{N-1} < \frac{\varepsilon(1-\lambda)}{|y_1 - y_2|}$$

Then for $n > m \ge N$, we see that:

$$|y_1 - y_2| < \varepsilon$$

Thus (y_n) is cauchy.

(b) Since (y_n) is a Cauchy sequence, we see that (y_n) is a convergent sequence, or in other words there is a limit point y such that $\lim_{n\to\infty} y_n = y$. Prove that y is a fixed point of f.

```
Notice that \lim_{n\to\infty}y_n=y and also \lim_{n\to\infty}y_{n+1}=y.
Since y_{n+1}=f(y_n), it follows that \lim_{n\to\infty}f(y_n)=y.
Thus \lim_{n\to\infty}f(y_n)=\lim_{n\to\infty}y_n=y.
In other words, f(y)=y, so y is a fixed point.
```