PhD Mathcamp Final Name:

Summer 2018
Time Limit: 120 Minutes

Instructions: Some questions on this test may be a bit difficult. Relax, and answer all 5 questions to
the best of your ability (check every page to make sure you have answered everything). Note that partial
solutions will receive partial credit, so putting something for a question will be better than leaving that
question blank.

1. (10 points) Let U = 2%y® where (z,y) € R2Z, a4+ 3 =1, and o, 8 > 0.!

(a) Is U homogeneous? If so, of what degree?

Ulta, ty) = (tz)*(ty)”
=ty
— ta+ﬁxayﬂ
= ta®y”
=tU(z,y)

So U is homogeneous of degree 1.

Show that U is concave.

DU = [axa_lyﬁ ﬂmo‘yﬁ_l}
ala— 1)z 2y8  aBfre~lyf!
afz~ly=t BB — Dy’

Notice that the first order leading principal minor is > 0 since:

DU =

ala — 1):6”_23/5 >0

So we need to look at all of the principal minors.

First Order Principal Minors:
ala— 1)z 248 <0 B(B—1zyP=2<0

Second Order Principal Minor:

[D2U[ = a(a —1)B(B — 1)a2*~2y?5=2 — a?g2g20-2y202
|D2U| =af(l —a— a2 2y "2 =0 since o + 3 = 1.

D?2U is negative semidefinite. Thus U is concave.

!'Recall that R3 = {(z,y) € R? : ¢ > 0 and y > 0}
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2. (5 points) Express the following sets using set-builder notation {f(z) € Z : p(x)}, where f(x) is
a function of z, and p(z) is a statement or condition of z.

(a) {2.4,6,8,.}

{2n€Z :n >0}

(b) {-27,-8,-1,0}

(n*cZ:-3<n<0}

3. (5 points) Consider the metric space: (R, |-|).

(a) Show that the interval (0,1) is open.

Notice that the complement of (0,1): (0,1) = (—o00,0] U [1,00). (—00,0] U [1,00) is closed
since it contains all of its limit points (since (R, |-|) is the metric space we are working in).
Thus (0, 1) is open.

Alternative Solution: See assignment 3 solutions.

(b) Show that the set {1,2,3} is closed.

Each point in the set {1,2,3} is an isolated points. Notice that isolated points are not limit
points, thus the set of limit points is: {} = ). Since () C {1,2,3}, {1,2,3} is closed.
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4. (10 points) Prove the following:

(a) The intersection of two convex sets is convex.

Let A and B be two convex sets.

Now let z,y € AN B.

Thus x,y € A and z,y € B.

Since x,y € A, it follows that Az + (1 — \)y € A for A € [0,1] as A is convex.

Since x,y € B, it follows that Az + (1 — A\)y € B for A € [0, 1] as B is convex

Finally, Az + (1 — M)y € A and Az + (1 — A\)y € B implies that Az + (1 — Ny € AN B.
Therefore AN B is convex.
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(b) The maximum of two convex functions is convex. In other words, if the functions f; and fo
are convex, then max{fy, fo} is convex.

This question will not be graded.

Let f1 and fy be convex functions and let f(z) = max{fi(x), f2(z)}. Thus:
filax + (1 —a)y) < afi(x) + (1 —-a)fi (1)

for any o € [0,1] and any z,y € Dom(f;) where i € {1,2}
Taking the max of both sides of (1), we get the following:

masc{fi(az + (1 - a)y)} < max{ofi(x) + (1 - ) fi(y)}

= max{fi(az + (1 - a)y)} < max{afi(x)} + max{(1 - a)fi(y)}

= max{ /(0 + (1~ a)y)} < amax{fi(2)} + (1~ ) max{fi(y)}
= Jlox+ (1 - a)y) < af(z) + (1 - a)f(y)

Therefore, f is convex.

Alternative Solution: Notice that we could use the theorem that says that the epigraph of
a function is a convex set iff the function is convex. When we take the maximum of two
functions, we are taking an intersection of the two epigraphs (of f; and f5) to form the
epigraph of the newly created function (max{f1, f2}). Since the two functions, f; and f, are
convex, their epigraphs are convex. The intersection of the epigraphs of f; and f; is convex
(as shown in 4a). This intersection is the epigraph of max{ fi, fo}. Thus the function defined
by max{ f1, f2} is convex.
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5. (10 points) Let f : R — R be a continuous function on R. Now assume that there is a A € (0, 1)
such that:

(@) = f(2)|< Al — 2|

for all z,2' € R

Suppose we start with y; € R and construct a sequence (y,) by a applying the function f at each
index to the previous element of the sequence. Thus our sequence would look like the following:

(Yn) = (Y1, y2, Vs, Y4, )
= (y1, f(yr), fF(f(w1), F(F(f(y1)))s o)

Or in other words, yn+1 = f(yn)-
You may find the following property of infinite series useful:

2—2—(1_)

where ¢ € R and r € (0,1). In other words, this infinite sum is less than the constant: a ( L )

1—r

(a) Show that the sequence (yy,) is a Cauchy sequence.

Notice that you are acutally proving the contraction mapping theorem in (R, |-|), yay!
We need to show that for € > 0, there exists an N € N such that for m,n > N, it follows that

|ym - yn| <e
Assume without loss of generality that n > m where m,n € N:

[Ym+1 = Ym2| = [f(ym) = f(Ym+1)]
< AMYm — Ym1l
where A € (0,1) Therefore:
Ym+1 = Ymtzl < Aym — Yma1]
< A2 ‘ymfl — Ym|
<N Ym—2 = Ym—1|

< ™ ‘yl _y2|

Thus |ym+1 - ym+2| <A™ |y1 - 3/2|
Therefore:

[Yrm = Yn| < |Ym = Ymt1 + Ymt1 = Yma2 + Ymt2 = o+ Yn-1 — Yu|
< |Ym = Yma1| + [Yms1 = Yma2| + oo+ (Y1 — Ynl
<Ay — gl + A g1 — ol + o+ AT yn — e
=AML AN+ ATy — |

. 1
<t (1_/\) ly1 — ya|

Let € > 0 and choose N € N such that:

)\N—l < 5(1_)\)
lyr — v2|

Then for n > m > N, we see that:
lyr — 12| < e

Thus (y,,) is cauchy.
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(b) Since (yn) is a Cauchy sequence, we see that (y,) is a convergent sequence, or in other words
there is a limit point y such that lim,  y, = y. Prove that y is a fixed point of f.

Notice that lim,,_, o ¥, = y and also lim, o0 Yn+1 = ¥.
Since ynt1 = f(yn), it follows that lim, .~ f(yn) = -

Thus lim,, oo f(yn) = lim, 00 Yn =Y.
In other words, f(y) =y, so y is a fixed point.



