Assignment 1

- 1. Solve the following system of linear equations:
 - x 3z = -2-3x + y + 6z = 32x 2y z = -1
- 2. Solve the following system of linear equations:
 - $-x_1 + 2x_2 x_3 = 2$ $-2x_1 + 2x_2 + x_3 = 4$ $3x_1 + 2x_2 + 2x_3 = 5$ $-3x_1 + 8x_2 + 5x_3 = 17$
- 3. Suppose $AB = \begin{bmatrix} 5 & 4 \\ -2 & 3 \end{bmatrix}$ and $B = \begin{bmatrix} 7 & 3 \\ 2 & 1 \end{bmatrix}$. Find A.
- 4. Show that $A^{-1} = (A^T A)^{-1} A^T$
- 5. Evaluate the following determinants

	14	2	0		2	0	0	1
(a)	$\frac{4}{5}$	$ \begin{array}{c} 3 \\ 1 \\ $	$\begin{vmatrix} 0\\2\\-4 \end{vmatrix}$	(b)	0	1	0	0
					1	6	2	0
					1	1	-2	3

6. Invert the following matrices, then show that the inverted matrices are actually inverted (i.e. A'A = I).

(a) $\begin{bmatrix} -1 & 1 \\ 1 & 0 \end{bmatrix}$	(b) $\begin{bmatrix} 2 & 5 \\ 1 & 3 \end{bmatrix}$	
(c) $\begin{bmatrix} 2 & 0 & 5 \\ 0 & 3 & 0 \\ 1 & 0 & 3 \end{bmatrix}$	(d) $\begin{bmatrix} 1 & 0 & 1 \\ -1 & 1 & 1 \\ -1 & -2 & -3 \end{bmatrix}$	

- 7. Let A be a 3×3 matrix with det(A) = 5. Find each of the following if possible.
 - (a) $det(A^T)$
 - (b) $\det(A+I)$
 - (c) det(2A).
- 8. Show that if A is invertible, then $det(A^{-1}) = \frac{1}{det(A)}$

9. Let A be an $n \times n$ invertible matrix; and D and $CA^{-1}B$ be square, $n \times n$ matrices. Show that:

$$det \begin{pmatrix} A & B \\ C & D \end{pmatrix} = det(A)det(D - CA^{-1}B)$$

Hint: Use the following matrix decomposition:

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix} = \begin{pmatrix} I & 0 \\ CA^{-1} & I \end{pmatrix} \begin{pmatrix} A & B \\ 0 & D - CA^{-1}B \end{pmatrix}$$

- 10. Let A and B be square matrices. Show that tr(AB) = tr(BA).
- 11. Let X be a $n \times k$ real matrix. Define projection matrix $P := X(X'X)^{-1}X'$ and orthogonal matrix $M := I_n P$. (You can assume $(X'X)^{-1}$ exists.)
 - (a) Show that P and M are symmetric and idempotent.
 - (b) Show that tr(P) = k, tr(M) = n k.
- 12. Consider the following equation: (y Xb)'(y Xb) where y is an $n \times 1$ vector, X is an $n \times k$ matrix, and b is a $k \times 1$ vector.
 - (a) What is the size of (y Xb)'(y Xb)?
 - (b) Simplify the expression above using distributive properties of matrix algebra.
 - (c) Take the derivative of what you found above with respect to b.
 - (d) Now solve for b.
 - (e) What is the size of the answer you found in d?