Assignment 2 Solutions

Joe Patten

August 8, 2018

Set Theory

List out all the elements of each set, and put the elements within curly brackets { and }.

- 1. $A = \{n \in \mathbb{N} : n < 10\}$
- $A = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$
- $2. \ B = \{n \in \mathbb{Z} : n^2 < 6\}$

$$B = \{-2, -1, 0, 1, 2\}$$

3. $C = \{x \in \mathbb{R} : x^2 + 1 = 0\}$

 $C= \emptyset$

Put the following sets in set builder notation. In other words, write each set in the form $\{x \in \mathbb{Z} : p(x)\}$, where p(x) is an expression of x.

5. $D = \{-1, -2, -3, \ldots\}$

$$D = \{n \in \mathbb{Z} : n < 0\}$$

6. $E = \{-9, -4, -1, 0, 1, 4, 9\}$

$$E = \left\{ \begin{cases} -(n^2) & \text{if } n \le 0\\ n^2 & \text{if } n > 0 \end{cases} : n \in \mathbb{Z} \text{ and } n^2 \le 9 \right\}$$

7. $F = \{-1, 0, 1, 8, 27\}$

$$F = \{n^3 \in \mathbb{Z} : -1 \le n \le 3\}$$

Let U be a universal set, and let A and B be subsets of U. Draw a venn diagram for the following sets:

8. $\overline{A \cup B}$

- 10. Let $U = \{1, 2, 3, ..., 15\}$ be the universal set, $A = \{1, 3, 8, 9\}$, and $B = \{2, 8, 15\}$. Determine the following:
 - (a) $A \cup B$

	$A \cup B = \{1, 2, 3, 8, 9, 15\}$
(b) $A \cap B$	
	$A \cap B = \{8\}$
(c) $A - B$	
	$A - B = \{1, 3, 9\}$

(d) \overline{A}

 $\overline{A} = \{2, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15\}$

(e) $A \cap \overline{B}$

$$A \cap \overline{B} = \{1, 3, 9\}$$

Direct Proof

- 11. Let $n \in \mathbb{Z}$. Prove that if n is even, then 3n 11 is odd. *Proof.* Assume n is even, thus n = 2k where $k \in \mathbb{Z}$ Therefore 3(2k) - 11 = 6k - 11 = 6k - 12 + 1 = 2(3k - 6) + 1Since $(3k - 6) \in \mathbb{Z}$ then 3n - 11 is odd.
- 12. Let $x, y, z \in \mathbb{Z}$. Prove that if x and z are odd, then xy + yz is even. *Proof.* Assume x and z are odd, thus x = 2k + 1 and z = 2m + 1 where $k, m \in \mathbb{Z}$ Therefore xy + yz = y(x + z) = y(2k + 1 + 2m + 1) = 2(my + ky + y)Since $my + ky + y \in \mathbb{Z}$, xy + yz is even.

Proof by Contrapositive

13. Let $n \in \mathbb{Z}$. Prove that if 9x + 3 is odd, then x is even.

Proof. (Contrapositive) Suppose x is odd, then x = 2k + 1 for some $k \in \mathbb{Z}$ Thus, 9x + 3 = 9(2k + 1) + 3 = 18k + 9 + 3 = 18k + 12 = 2(9k + 6)Since $(9k + 6) \in \mathbb{Z}$, then 9x + 3 is even.

Proof by Contradiction

14. Prove that if x and y are positive real numbers, then $\sqrt{x+y} \neq \sqrt{x} + \sqrt{y}$

Proof. (Contradiction) Let x and y are positive real numbers, and assume to the contrary that $\sqrt{x+y} = \sqrt{x} + \sqrt{y}$

$$\sqrt{x+y} = \sqrt{x} + \sqrt{y}$$
$$\sqrt{x+y}\sqrt{x+y} = (\sqrt{x} + \sqrt{y})\sqrt{x+y}$$
$$x+y = \sqrt{x(x+y)} + \sqrt{y(x+y)}$$
$$\sqrt{x^2} + \sqrt{y^2} = \sqrt{x^2+xy} + \sqrt{y^2+xy}$$

Notice that since xy > 0, $\sqrt{x^2 + xy} > \sqrt{x^2}$ and $\sqrt{y^2 + xy} > \sqrt{y^2}$. Thus, $\sqrt{x^2} + \sqrt{y^2} = \sqrt{x^2 + xy} + \sqrt{y^2 + xy}$ is a contradiction.

A simpler proof (like many of you did) is to assume $\sqrt{x+y} = \sqrt{x} + \sqrt{y}$, thus $x+y = x+y+2\sqrt{xy}$ $\Rightarrow \sqrt{xy} > 0$, which is a contradiction since x, y > 0.

Proof by Cases

15. Let $a, b \in \mathbb{Z}$. Prove that a - b is even if and only if a and b are of the same parity (either both are even or both are odd).

Since this is an iff statement, we have to prove both ways.

Proof. ⇒) Assume that *a* and *b* are not of the same parity. We are required to prove that a - b is odd Without loss of generality, assume *a* is even and *b* is odd. Thus a = 2k and b = 2j + 1 from some $j, k \in \mathbb{Z}$ Therefore a - b = 2k - 2j - 1 = 2k - 2j - 2 + 1 = 2(k - j - 1) + 1.

Since $(k - j - 1) \in \mathbb{Z}$, it follows that a - b is odd.

 \Leftarrow) Assume that a and b are of the same parity. Now we are required to show that a - b is even. We will proceed by using cases.

Case 1: Suppose a and b are even. Thus a = 2l and b = 2m for some $l, m \in \mathbb{Z}$ So a - b = 2l - 2m = 2(l - m)Since $(l - m) \in \mathbb{Z}$, then a - b is even.

Case 2: Suppose a and b are odd. Thus a = 2p + 1 and b = 2q + 1 for some $p, q \in \mathbb{Z}$ So a - b = (2p + 1) - (2q + 1) = 2p - 2q = 2(p - q)Sicne $(p - q) \in \mathbb{Z}$, then a - b is even.

Mathematical Induction

16. Prove that

$$1 + 5 + 9 + 13 + \ldots + (4n - 3) = 2n^2 - n$$

for every $n \in \mathbb{N}$

Proof. (Proof by Induction) Base case: Consider n = 1. We need to show that $1 = 2(1)^2 - 1$:

$$1 = 2(1)^2 - 1$$

 $1 = 2 - 1$
 $1 = 1$

Thus the base case holds.

Inductive Step: We need to now show that $P(k) \Rightarrow P(k+1)$ holds. We assume P(k) is true, or in other words:

$$1 + 5 + 9 + 13 + \ldots + (4k - 3) = 2k^2 - k$$

We are required to prove that:

$$1 + 5 + 9 + 13 + \ldots + (4k - 3) + (4(k + 1) - 3) = 2(k + 1)^{2} - (k + 1)$$

Observe that:

$$1 + 5 + 9 + 13 + \ldots + (4k - 3) + (4(k + 1) - 3) = 2k^2 - k + (4(k + 1) - 3)$$
$$= 2k^2 + 3k + 1$$
$$= 2(k + 1)^2 - (k + 1)$$

The result then follows by the Principle of Mathematical Induction.

Relations and Functions

17. Let $f : \mathbb{R} \to \mathbb{R}$ be the function defined by $f(x) = x^2 + ax + b$ where $a, b \in \mathbb{R}$. Show that f is not one-to-one.

In order to show that this function is not one-to-one we need to find an example where the definition of one-to-one does not hold for this function. Consider x = -a and x = 0. Notice that f(-a) = f(0), thus the function is not one-to-one.

Set Theory Proofs

De Morgan's Laws are defined as such:

$$\overline{A \cup B} = \overline{A} \cap \overline{B} \tag{1}$$

$$\overline{A \cap B} = \overline{A} \cup \overline{B} \tag{2}$$

In order to show that two sets, X and Y, are equal, we need to show that every element of X is an Y, and every element of Y is in X. In other words, we need to show that $X \subseteq Y$ and $Y \subseteq X$. Suppose I wanted to show that the first expression was true, in other words that $\overline{A \cup B} = \overline{A} \cap \overline{B}$. To show the equality holds, I need to show that $\overline{A \cup B} \subseteq \overline{A} \cap \overline{B}$ and $\overline{A} \cap \overline{B} \subseteq \overline{A \cup B}$. I'll first show that $\overline{A \cup B} \subseteq \overline{A} \cap \overline{B}$.

Proof Assume that $x \in \overline{A \cup B}$. $\Rightarrow x \notin (A \cup B)$ $\Rightarrow x \notin A$ and $x \notin B$ $\Rightarrow x \in \overline{A}$ and $x \in \overline{B}$ $\Rightarrow x \in \overline{A} \cap \overline{B}$

Next, in order to show that $\overline{A} \cap \overline{B} \subseteq \overline{A \cup B}$, we would assume an arbitrary $x \in \overline{A} \cap \overline{B}$, and show that $x \in \overline{A \cup B}$. Although essential to the proof, I have left this part out.

18. Prove that expression (2) holds. Namely, that $\overline{A \cap B} = \overline{A} \cup \overline{B}$. Use the technique outlined above. *Proof.* To show that $\overline{A \cap B} = \overline{A} \cup \overline{B}$, we need to show that $\overline{A \cap B} \subseteq \overline{A} \cup \overline{B}$ and $\overline{A \cap B} \supseteq \overline{A} \cup \overline{B}$. We will first show that $\overline{A \cap B} \subseteq \overline{A} \cup \overline{B}$:

 $\begin{array}{l} \subseteq) \text{ Suppose that } x \in \overline{A \cap B} \\ \Rightarrow x \notin A \cap B \\ \Rightarrow x \notin A \text{ or } x \notin B \\ \Rightarrow x \in \overline{A} \text{ or } x \notin \overline{B} \\ \Rightarrow x \in \overline{A \cup B} \\ \text{Thus } \overline{A \cap B} \subseteq \overline{A} \cup \overline{B} \end{array}$

 $\begin{array}{l} \supseteq) \text{ Suppose that } y \in \overline{A} \cup \overline{B} \\ \Rightarrow y \in \overline{A} \text{ or } y \in \overline{B} \\ \Rightarrow y \notin A \text{ or } y \notin B \\ \Rightarrow y \notin A \cap B \\ \Rightarrow y \in \overline{(A \cap B)} \\ \text{Therefore } \overline{A \cap B} \subseteq \overline{A} \cup \overline{B} \end{array}$

Hence $\overline{A \cap B} = \overline{A} \cup \overline{B}$.

19. Prove that $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ using the technique outlined above.

 $\begin{array}{l} Proof. \subseteq) \text{ Suppose that } x \in A \cap (B \cup C) \\ \Rightarrow x \in A \text{ and } x \in (B \cup C) \\ \Rightarrow x \in A \text{ and } (x \in B \text{ or } x \in C) \\ \Rightarrow (x \in A \text{ and } x \in B) \text{ or } (x \in A \text{ and } x \in C) \\ \Rightarrow x \in (A \cap B) \cup (A \cap C) \\ \text{Thus } A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C) \end{array}$

 $\begin{array}{l} \supseteq) \text{ Suppose that } y \in (A \cap B) \cup (A \cap C) \\ \Rightarrow (y \in A \text{ and } y \in B) \text{ or } (y \in A \text{ and } y \in C) \\ \Rightarrow y \in A \text{ and } (y \in B \text{ or } y \in C) \\ \Rightarrow y \in A \cap (B \cup C) \\ \text{Therefore } (A \cap B) \cup (A \cap C) \subseteq A \cap (B \cup C) \end{array}$

Hence $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.